2018

CHEMISTRY (Major)

Paper: 6.4

(Inorganic Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

 $1 \times 7 = 7$

- (a) Silica gel contains [CoCl₄]²⁻ as an indicator. When activated, silica gel becomes dark blue while upon absorption of moisture, its colour changes to pale pink. This is because
 - (i) Co(II) forms kinetically labile while Co(III) forms kinetically inert complexes
 - (ii) Co(II) changes its coordination from tetrahedral to octahedral

- (iii) Co(II) changes its oxidation state to Co(III)
- (iv) tetrahedral crystal field splitting is not equal to octahedral crystal field splitting
- (b) In carbon dating application of radioisotopes, ¹⁴C emits
 - (i) β-particle
 - (ii) α-particle
 - (iii) y-radiation
 - (iv) positron
- (c) The correct d-electron configuration showing spin-orbit coupling is
 - (i) $t_{2g}^3 e_g^2$
 - (ii) $t_{2g}^6 e_g^0$
 - (iii) $t_{2g}^4 e_g^0$
 - (iv) None of the above
- (d) In photosynthetic systems, the redox metalloproteins involved in electron transfer are cytochrome (cyt b),

cytochrome bf complex (cyt bf) and plastocyanin (PC). The pathway of electron flow is

- (i) PC \rightarrow cyt $b \rightarrow$ cyt bf
- (ii) cyt $bf \rightarrow \text{cyt } b \rightarrow \text{PC}$
- (iii) cyt $b \rightarrow$ cyt $bf \rightarrow$ PC
- (iv) PC \rightarrow cyt $bf \rightarrow$ cyt b
- (e) Which one of the following statements is true for half-life of radioactive matters?
 - (i) It depends on amount of the matter
 - (ii) It depends on types of the matter
 - (iii) It depends on phase of the matter
 - (iv) It depends on temperature of the matter
- (f) The lanthanide(III) ion having the highest partition coefficient between tri-n-butylphosphate and concentrated HNO₃ is
 - (i) La(III)
 - (ii) Eu(III)
 - (iii) Nd(III)
 - (iv) Lu(III)

(Continued)

- (g) The activity of a radioactive source is measured in
 - (i) sievert
 - (ii) gray
 - (iii) becquerel
 - (iv) watt
- 2. Answer the following:

2×4=8

- (a) Explain why, in terms of electronic transitions, substituting two of the NH₃ in $[Cr(NH_3)_6]^{2+}$ by bipy to form $[Cr(NH_3)_4(bipy)]^{2+}$ leads to more intensely coloured $(\varepsilon > 45000 \text{ L mol}^{-1} \text{ cm}^{-1})$ complex.
- (b) Potassium thiocyanate solution is used as a very sensitive test for the presence of iron(III) ions in solution. Discuss the chemistry behind the test.
- (c) Metal ions are often used for diagnostic medical imaging. Explain the fact giving suitable examples.
- (d) If the decrease in mass of a radioactive material between 18 and 24 years is 4 g, find the initial mass of the material (half-life of the material is 6 years).

- 3. Answer any three of the following: 5×3=15
 - (a) What are spectroscopic term symbols?

 Discuss how Hund's rule determine the term symbols of ground electronic states.

 2+3=5
 - (b) What is meant by lanthanide contraction? Discuss how this phenomenon influences the properties of the transition elements immediately following the lanthanides. 1+4=5
 - (c) What is a radioactive disintegration series? Specify the different steps involved in the disintegration series of thorium. Why does the thorium series also known as 4n series? 1+3+1=5
 - (d) Name the metal ion present in the metalloenzyme carbonic anhydrase.

 Discuss the structure and functions of carbonic anhydrase.

 1+4=5
 - (e) (i) What do you mean by labile and inert complexes? How does the d-electron configuration affect the labile/inert nature of complexes?

1+2=3

		ı prepare K ₃ [Rh) İly inert K ₃ [RhCl)	
4. Answ	ver any three of the	he following :	10×3=30
(a)	conductometr the conducto	basic principle ic titrations. Dis metric titration c acid versus d	cuss curve
1-4-1		major roles of ngical systems?	netal 3
		owing metal salts tive medicinal use	
	Metal salts	Medicinal	uses
(1) Li	₂ CO ₃	(I) Disinfectant	
(2) cis-[Pt(amine) 2X2] (II) Antiulcer; antacid			
(3) A ₂	gNO ₃	(III) Manic depre	ssion
(4) Bi	i(sugar) polymers	(IV) Anticancer a	igent
(b)	occur? Write a	induced radioact a nuclear equation of ⁵⁶ Mn through of ⁵⁹ Co	n for the
8A /896		(Co	ntinued)

(ii) Discuss the ligand substitution mechanism in octahedral complexes. Sketch the reaction profile for the reaction $[\text{Co}(\text{NEt}_3)_5\text{Cl}]^{2+} + \text{H}_2\text{O} \rightarrow \\ [\text{Co}(\text{NEt}_3)_5(\text{H}_2\text{O})]^{3+} + \text{Cl}^{-}$

Clearly indicate intermediates and transition states. 2+3=5

(c) (i) The fusion reaction given below is one of the final stages in the fusion process that occurs in the Sun:

$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + ?$$

(1) Complete the reaction identifying the missing particle.

2) Calculate the energy released in the fusion reaction using the following information (the mass number of the other particle is also required):

$${}_{1}^{2}H = 3.345 \times 10^{-27} \text{ kg}$$

 ${}_{1}^{3}H = 5.008 \times 10^{-27} \text{ kg}$
 ${}_{2}^{4}He = 6.647 \times 10^{-27} \text{ kg}$

(ii) What do you mean by BOD and COD? What is their significance?

2+2=4

3

1

2

(iii) Carbon monoxide is more dangerous than carbon dioxide.
Why?

8A/896 (Turn Over)

(i) The electronic spectrum of [VCl₄(bipy)] shows a single asymmetric band at 21300 cm⁻¹ of moderate intensity (ε < 800 L mol⁻¹) with a shoulder at lower energy (17400 cm⁻¹). How many absorption bands are expected if this complex is regarded as a perfect O_h?

2

Explain why MnO_4^- is intensely purple coloured while ReO_4^- is not highly coloured.

3

(iii) Discuss the separation of the lanthanides via ion-exchange chromatography.

5

- (e) (i) How does neutron activation analysis (NAA) work? What types of archaeological samples can be analyzed by NAA?

 2+3=5
 - (ii) Write notes on the following (any two): $2\frac{1}{2} \times 2=5$
 - (1) Vibronic-coupling
 - (2) Orgel diagram
 - (3) Nuclear belt of stability

**