2018

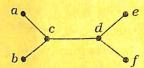
MATHEMATICS

(Major)

Paper : 6.5

(Graph and Combinatories)

Full Marks: 60


Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) Write the multiplicative rule principle of combinatories.
 - (b) In how many ways can five examinations be scheduled in a week so that no two examinations are scheduled on the same day, considering Sunday as a holiday?
 - (c) In how many ways can a committee of 5 persons be formed from 6 men and 4 women so as to include 3 men and 2 women?
 - (d) Draw a simple graph having four vertices each of degree 2.
 - (e) Draw complete graph K4.
 - (f) What is the length of a path?
 - (g) How many edges of a tree are having n vertices?

Or

- 2. Answer the following questions:
- $2 \times 4 = 8$
- (a) A bag contains six white marbles and five red marbles. Find the number of ways that four marbles can be drawn from the bag if they must be the same colour.
- (b) How many vertices are there in a graph with 15 edges, if each vertex is of degree 3?
- (c) Show that there is only one path between every pair of vertices in a tree.
- (d) Find the radius and diameter of the tree shown below and show that diameter in a tree is not necessarily double of its radius:

- 3. Answer the following questions:
 - (a) Give combination proof of the following identities: 2+3=5

(i)
$$C(n, r) = C(n, n-r)$$

(ii)
$$C(n+1, r) = C(n, r) + C(n, r-1)$$

(b) There exists no simple graph corresponding the following degree sequences:

Justify the above statement.

5

Prove that for any graph G with six vertices, G or \overline{G} contains a triangle.

- (c) Let v be a point of a connected graph G.

 Then prove that the following statements are equivalent:
 - (i) v is a cut point of G.
 - (ii) There exist points u and w distinct from v such that v is in every u w path.

5

(iii) There exists a partition of the set of points $V - \{v\}$ into subsets U and W such that for any point $u \in U$ and $w \in W$, the point v is on every u - w path.

Or

Let G be a connected graph with at least three points. If G is a block, then prove that every two points of G lie on a common cycle.

- 4. Answer any one part :
 - (a) For any graph G, prove that

$$K(G) \le \lambda(G) \le \delta(G)$$

The symbols have their usual meaning. Also show that the maximum vertex connectivity of a graph G with n vertices and e edges (e > n - 1) is the integral part of the number, $\frac{2e}{n}$. 7+3=10

8A/905

(Continued)

8A/905 (Turn Over)

	(b)	Stat	e and prove Menger's theorem on	
		grap		10
5.	Answer any one part :			
	(a) Prove that a connected graph is			
	Bully		erian if and only if every vertex of G	
			even degree.	10
	(b)		If G is a simple graph with	
	miner	19	n vertices $(n \ge 3)$ and if	
			$deg \cdot (v) + deg(w) \ge n$ for every pair of	
			non-adjacent vertices v and w , then	
			prove that G is Hamiltonian.	7
		(ii)	Under what conditions on r and s	
			does the complete bipartite graph	
			K _{r, s} have a Hamiltonian circuit?	3
6.				
	(a)	(i)	Find the number of integers	
	(u)	(4)	between 1 and 250 that are	
			divisible by any of the integers	
			2, 3, 7.	5
		(ii)	Find the number of integral	
		(66)	solutions of the equation	
			x+y+z=18 with the conditions	
			that $x < 7$, $y < 8$ and $z < 9$.	5
	(b)	(i)	Find the number of non-negative	
	ant	TE LO	solution of $x+y+z=18$ with the	
			conditions that $x \ge 3$, $y \ge 2$, $z \ge 1$.	5
		(ii)	What is the probability that exactly	
			one cell is empty if ten identical	
			balls are distributed randomly into	
			five distinct cells?	5
***				J