2018

STATISTICS

(Major)

Paper: 6.1

(Statistical Inference—2)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

 $1 \times 7 = 7$

- (a) Suppose you want to test $\theta = \theta_0$ against $\theta = \theta_1$ with w as critical region and A as acceptance region, then $P_{\theta_0}(A)$ is
 - (i) the probability of a correct decision
 - (ii) the probability of an incorrect decision
 - (iii) the probability of type I error
 - (iv) None of the above

- As the same symbols in $\mathbf{1}(a)$, $P_{\theta_1}(w)$ is
 - (i) the probability of type II error
 - (ii) the probability of type I error
 - (iii) the power of the test
 - (iv) None of the above
- Suppose a random sample of size n is taken from a normal population with mean μ and variance σ^2 if \overline{x} is the sample mean, then the 99% confidence interval for μ is
 - (i) $\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$
 - (ii) $\bar{x} \pm 2.58 \frac{\sigma}{\sqrt{n}}$
 - (iii) $\bar{x} \pm 2\frac{\sigma}{\sqrt{n}}$
 - (iv) None of the above
- Empirical distribution function based on
 - (i) sample values
 - (ii) population values.
 - (iii) both population and sample values
 - (iv) None of the above

- For the Wilcoxon signed rank test, we assume that (a) Define the most powerful test.
 - (i) the population is not symmetric
 - (ii) the population is symmetric
 - (iii) the population is sometimes symmetric and sometimes not
 - (iv) None of the above
- Explain briefly the likelihood ratio test Neyman-Pearson test gives us the
 - (i) best critical region
 - (ii) worst critical region
 - (iii) sometimes best and sometimes worst critical region
 - (iv) None of the above
- If for a normal distribution, the hypothesis specifies the mean but not the variance, then it is a case of
 - (i) composite hypothesis
 - (ii) simple hypothesis
 - (iii) alternative hypothesis
 - (iv) None of the above

2.	Answer	the	following	questions		
----	--------	-----	-----------	-----------	--	--

2×4=8

- (a) Define the most powerful test.
- (b) Define the Kolmogorov-Smirnov statistic.
- (c) State the Neyman-Pearson lemma.
- (d) Define the confidence interval.

3. Answer any three of the following questions:

5×3=15

- (a) Explain briefly the likelihood ratio test.

 How is this approach different from
 Neyman-Pearson lemma?

 4+1=5
- (b) An urn contains 10 balls of which θ are blue (and the rest of the balls being of red and white colours). Suppose we take a sample of 3 balls and reject H₀ if all the three balls drawn yield blue balls. Calculate the probabilities of type I and type II errors, assuming sampling was done without replacement.
- (c) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta, \sigma^2)$, where variance σ^2 is supposed to be known. Find the confidence limits to the population mean θ with confidence coefficient $(1-\alpha)$.
- (d) Write a note on Kolmogorov-Smirnov one sample statistic.
- (e) Write a note on run test.

4. Answer any three of the following questions:

10×3=30

5

- (a) (i) Write a note on median test.
 - (ii) Define the following: $2\frac{1}{2}+2\frac{1}{2}=5$
 - (1) Uniformly most powerful test
 - (2) Type I and type II errors
- (b) Find the most powerful and uniformly most powerful regions in taking random sample from a normal distribution with mean unknown but variance known.

8+2=10

- (c) (i) Explain why one should go for confidence interval instead of point estimation.
 - (ii) If $x \ge 1$ is the critical region for testing $\theta = 2$ against alternative $\theta = 1$, on the basis of a single observation from the population

$$f(x, \theta) = \theta e^{-x\theta}; \ 0 \le x < \infty$$

obtain the values of type I and type II errors.

(d) Write an explanatory note on Mann-Whitney test.

8A/914

(Turn Over)

8A/914

(Continued)

5

5

(e) (i)	Compare	and	contr	ast	between	
	Kolmogorov-Smirnov			one	sample	•
Inter	test and					

5

(ii) Enumerate the steps involved in testing mean of a normal population using likelihood ratio test.

5

* * *