2019

STATISTICS

(Major)

Paper : 5.1

(Sampling Distribution and Statistical Inference-I)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions as directed:

1×7=7

(a) The points of inflexion of F-distribution always exist.

(State True or False)

(b) State Cramer-Rao lower bound of the variance of an unbiased estimator.

- (c) The degrees of freedom (df) of a chi-square statistic is 3, what will be the df of the corresponding Fisher's t-statistic?
- (d) What is asymptotic unbiasedness?
- (e) State the cumulative distribution function (c.d.f.) of the smallest order statistic $x_{(1)}$.
- (f) Generally the method of moments yields less efficient estimators than those obtained from the principle of _____.

(Fill in the blank)

- (g) Define linear orthogonal transformation'.
- **2.** Answer the following questions: $2\times4=8$
 - (a) Under what conditions, is χ^2 (chi-square) test valid?
 - (b) For large n, prove with usual notation

$$S.E(s^2) = \sigma^2 \times \sqrt{\frac{2}{n}}$$

(c) Find the MLE of θ in

$$f(x, \theta) = (1 + \theta) x^{\theta}, \ 0 < x < 1$$

based on an independent sample of size n.

(d) A random sample of size 4 is drawn from the discrete uniform distribution

$$P(X = x) = \frac{1}{6}, \quad x = 1, 2, \dots, 6$$

Obtain the distribution function of the largest statistic.

3. Answer any three parts:

5×3=15

(a) Let $\hat{\theta}_n$ be an unbiased estimator of θ_n and $var(\hat{\theta}_n) = \sigma_n^2$. Also assume that

$$\begin{cases}
\theta_n \to \theta \\
\text{and } \sigma_n \to 0
\end{cases} \text{ as } n \to \infty$$

Then prove that $\hat{\theta}_n$ is consistent estimator of θ .

(b) Show that the m.g.f. of $Y = \log \chi^2$, where χ^2 follows chi-square distribution with n d.f. is

$$M_Y(t) = 2^t \Gamma(\frac{n}{2} + t) / \Gamma(n/2)$$

20A/283

(Continued)

(Turn Over)

(c) Write down the probability function of r^2 where r is the sample correlation coefficient. If X is an F variate with 2 and $n(n \ge 2)$ degrees of freedom, then show that

 $P(X \ge K) = \left(1 + \frac{2K}{n}\right)^{-n/2}$

- (d) Let T_1 be the MVUE of θ and T_2 be another unbiased estimator of θ , then prove that the linear combination of T_1 and T_2 will not be MVUE of θ .
- (e) Show that for t-distribution with n d.f. the mean deviation about mean is

$$\sqrt{n}\Gamma(\frac{n-1}{2})/\Gamma(\frac{1}{2})\Gamma(\frac{n}{2})$$

- 4. Answer either (a) or (b) of the following questions:
 - (a) (i) Describe briefly the method of minimum chi-square.
 - (ii) Derive Snedecor's F-distribution. 7
 - (b) (i) Find the p.d.f. of the rth order statistic $X_{(r)}$ in a random sample of size n from the exponential distribution

$$f(x) = \alpha e^{-\alpha x}, \ \alpha > 0, \ x \ge 0$$

(iii) What is the distribution of $W_1 = X_{(r+1)} - X_{(r)}$?

- 5. Answer either (a) or (b) of the following questions:
 - (a) (i) Write a brief note on the method of moments for estimating parameters.
 - (ii) A random variable X takes the values 0, 1, 2 with respective probabilities

$$\frac{\theta}{4N} + \frac{1}{2} \left(1 - \frac{\theta}{N} \right), \quad \frac{\theta}{2N} + \frac{\alpha}{2} \left(1 - \frac{\theta}{N} \right)$$
and
$$\frac{\theta}{4N} + \frac{1 - \alpha}{2} \left(1 - \frac{\theta}{N} \right)$$

where N is a known number and α and θ are unknown parameters. If 75 independent observations on X yielded the values 0, 1, 2 with frequencies 27, 38, 10 respectively, estimate the parameters θ and α by the method of moments.

7

3

(b) (i) Let x_1, x_2, \dots, x_n be a random sample of n observations from Bernoulli population with parameter θ . Find the estimator of θ by the method of minimum chi-square.

(ii) If X_1 and X_2 are two independent random variables having common density function

$$f(x) = e^{-x}, \quad 0 \le x < \infty$$

show that $u = \frac{X_1}{X_2}$ has

F-distribution with (2, 2) d.f. 6

- **6.** Answer either (a) or (b) of the following questions:
 - (a) (i) State important applications of F-distribution.
 - (ii) Let the estimator of θ in $f(x, \theta)$ be T, where T is a sufficient statistic. If the MLE of θ exists, then show that it is the function of the sufficient statistic T.

(b) (i) State the important properties of MLE.

(ii) For 2×2 contingency table

а	b
c	d

prove that chi-square statistics for testing independence of attributes is given by

$$\chi^2 = \frac{N(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

where N = a + b + c + d.

7

3

4

3