3 (Sem-3) PHY M2

2021 (Held in 2022)

PHYSICS

(Major)

Paper: 3.2

(Current Electricity and Magnetostatics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) Write down the continuity equation that relates the charge density and current density at a point.
 - (b) Define current sensitivity of ballistic galvanometer.
 - (c) When does a series L-C-R circuit have the maximum impedance and what is its value?

- (d) In a region, the force $\vec{F} = q(\vec{v} \times \vec{B})$ on a charge q is zero. What conclusions can you draw from it?
 - (e) How does a current loop behave as a magnetic dipole?
 - (f) What do you mean by 'phasor diagram'?
 - (g) The $div \vec{B} = 0$. Explain its significance.
- 2. Answer the following questions: $2\times4=8$
 - (a) Draw the circuit diagram of Kelvin's double bridge for the measurement of low resistance.
 - (b) In an oscillatory circuit, L = 0.2 henry, $C = 10.002 \ \mu F$. Find the maximum values of the resistance so that the circuit may oscillate.
 - (c) What do you mean by Q-factor of an a.c. series resonant circuit?
 - (d) Distinguish between 'magnetic vector potential' and 'magnetic scalar

- 3. Answer **any three** of the following questions: $5\times 3=15$
 - (a) Discuss the growth of a current in a circuit containing inductance, resistance and a constant source of e.m.f. What is time constant of the circuit?
 - (b) Obtain an expression for the power factor of an a.c. circuit. Explain the term 'Wattless current'.
 - (c) What is thermoelectric power? Considering the electromotive force (e) as
 - $e = \pi_2 \pi_1 \int_1^2 (\sigma_A \sigma_B) dT$, find an expression for thermoelectric power.
 - (d) Obtain an expression for force and torque on a current loop in a uniform magnetic field.
- 4. (a) What is a ballistic galvanometer? In case of ballistic galvanometer, establish the relation $q = \frac{T}{2\pi} \cdot \frac{C}{\eta AB} \theta_0$
 - where θ_0 is the angle through which the suspension fibre is twisted. 1+7=8
 - (b) State Kirchoff's Voltage law and give its significance. 2

3

Find with vector diagrams, the impedances of circuits consisting of (a) an inductance and resistance in series, and (b) a capacitance and a resistance in series when a source of alternating e.m.f. is applied across them. 5+5=10

5. What is magnetic vector potential? Find the vector potential due to an electric current flowing in a wire at a point outside the wire and hence calculate the magnetic flux density \vec{B} . 2+6+2=10 Considering 11 70 lectromethy

A d.c. e.m.f. is suddenly applied to a circuit consisting of a resistor R and capacitor C in series. Write the e.m.f equation for the circuit and hence the current at any instant. What is meant by time constant and what is its significance? 2+6+2=10

Derive the relations 6. $\sigma_b - \sigma_a = T \frac{d^2 E}{dT^2}$ for Peltier and Thomson effects. Show how various co-efficients are represented on a thermoelectric diagram.

3+4+3=10

State Biot-Savart Law in magnetostatics. Using this law, obtain an expression for the magnetic field at a point on the axis of a circular coil carrying current. 2+8=10