Total number of printed pages-8

3 (Sem-3/CBCS) STA HC 1

(u) None of 1202 nve

(Held in 2022)

I X and SOITSITATE ependent Chi-

square vari(servonoH), and na degrees

Paper: STA-HC-3016

(Sampling Distributions)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed:

 1×7=7
 - (a) For random sample of size 2 drawn from $N(0, \sigma^2)$ population, the expected value of the smallest order statistic is

variate with
$$n$$
 d.i., $\frac{c_0}{\sqrt{\pi}}$ for large $\sqrt{2x}$ is distributed $a \pi \sqrt{x}$

(ii)
$$-\frac{\sigma}{\sqrt{\pi}}$$

(iii)
$$\frac{2\sigma^2}{\sqrt{\pi}}$$

- (iv) None of the above (Choose the correct option)
- (b) If X and Y are two independent Chisquare variates with n_1 and n_2 degrees of freedom respectively, then $u = \frac{X}{Y}$

(i)
$$\beta_2\left(\frac{n_1}{2},\frac{n_2}{2}\right)$$

- (ii) $\beta_1(n_1, n_2)$
- (iii) F-distribution
- (iv) None of the above (Choose the correct option)
 - (c) If X is distributed as a Chi-square variate with n d.f., then for large N, $\sqrt{2x}$ is distributed as
 - (i) N(2n, 1)
 - (ii) $N(\sqrt{2n},1)$

nodulu (iii)
$$N(\sqrt{2n}, n)$$
 confidence (iii) $N(\sqrt{2n}, n)$

- (iv) None of the above
 (Choose the correct option)
- (d) For testing the hypothesis 'population correlation ratio is zero'. The test statistics is

(i)
$$\frac{\eta^2}{1-\eta^2} \cdot \frac{N-h}{h-1}$$
 88.5 ± 9 (iii)

(ii)
$$\frac{1-\eta^2}{\eta^2} \cdot \frac{N-h-1}{\log h} = 0 \quad \text{(iii)}$$

(iii)
$$\frac{\eta^2}{1-\eta^2} \cdot \frac{N-h-1}{h^2}$$

(iv) None of the above

(Choose the correct option)

(e) If a statistic t follows students t-distribution with n d.f., then t^2 follows

nodonu——.neg Jashum (Fill in the blank)

(f) 95% confidence limits for population proportion are

$$(part of (i) = p \pm 1.96 \sqrt{\frac{pa}{n}})$$

(d) For testing the hypothesis 'population correlation
$$\frac{pq}{n} \sqrt[n]{86.2 \pm q}$$
 (ii)

(iii)
$$p \pm 2.33 \sqrt{\frac{pq}{n}}$$

(iv) None of the above

(Choose the correct option)

(g) The moment generating function of t-distribution does not exist.

(norted lostros and second (State True or False)

- 2. Answer the following questions: 2×4=8
 - (a) Explain the terms 'level of significance' and 'critical region'.
 - of Chi-square distribution. Hence obtain mean and variance.

(c) A random sample of size 4 is drawn from the discrete uniform distribution

$$P(X=x)=\frac{1}{6}$$
; $x=1, 2, 3, 4, 5, 6$

Obtain the distribution of the smallest and largest order statistic.

sample from N(0, 1). Let us further

define
$$\overline{x}_k = \frac{1}{k} \sum_{i=1}^k X_i$$
 and

$$\overline{X}_{n-k} = \frac{1}{n-k} \sum_{i=k+1}^{n} X_i$$
 s esoque (b)

Find the distribution of $k \overline{X}_{n-k}^{-2} + (n-k) \overline{X}_{n-k}^{-2}$

- 3. Answer any three of the following questions: 5×3=15
 - (a) Derive the joint probability distribution of $X_{(r)}$ and $W_{rs} = X_{(s)} X_{(r)}$; (r < s) based on a random sample of size n from the exponential distribution with parameter α .

- V_2 degrees of freedom, find the distribution of $\frac{1}{X}$.
 - (c) Show that the m.g.f. of $Y = \log \chi^2$, where χ^2 follows Chi-square distribution with n d.f. is

$$M_{Y}(t) = \frac{2^{t} \Gamma\left(\frac{n}{2} + t\right)}{\Gamma(n/2)}$$

(d) Suppose a person is interested in testing the equality of two population standard deviations, say σ_1 and σ_2 . For this purpose two samples of sizes n_1 and n_2 are drawn from the two populations respectively and suppose that the sample standard deviations are S_1 and S_2 respectively.

Explain how you would test the hypothesis $H_0: \sigma_1 = \sigma_2$. Also discuss test of H_0 when both n_1 and n_2 are large.

(e) Show that for large degrees of freedom, t-distribution tends to standard normal distribution.

Answer the following questions: 10×3=30

- 4. (a) (i) Explain clearly the procedure generally followed in testing of a hypothesis. Also point the difference between one-tail and two-tail tests.
 - (ii) Show that in odd sample of size n from U(0,1) population, mean of the distribution of median is $\frac{1}{2}$.

Or

- (b) Derive the probability density function of the student's t-distribution with ν d.f. and hence find its mean and variance.
- 5. (a) (i) Show that for large d.f., the Chisquare distribution tends to the normal distribution.

mober (ii) show that for t-distribution with nlearned by d.f. mean deviation about mean is given by

$$\frac{\sqrt{n} \Gamma\left(\frac{n-1}{2}\right)}{\sin \sqrt{\pi} \Gamma\left(\frac{n}{2}\right)} = 10 \times 3 = 30$$

- 6. *(a) (i)* Derive the expression for the standard error of the mean of a point the random sample of size n and bas list and sample proportion. 5
 - (ii) Write down some familiar m existic elegapplications of order statistics. 5 or population, mean of

- The strain of t then show that $\chi^2 = n_1 F$ follows Chi-square distribution with n_1 erive the probability il. being function
- bas as (ii) Explain how the student's tdistribution is used to test the difference between the means of two samples which are paired of show together. 3