3 (Sem-1) PHY M 1

2021

(Held in 2022)

PHYSICS

(Major)

Paper: 1.1

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

GROUP-A

(Mathematical Methods)

Marks: 20

- 1. (a) The co-ordinates of the two points P and Q are (3, 4, -6) and (1, -2, 3). Find PQ.
 - (b) What is the geometrical interpretation of the vector product of two vectors?

- (c) Show that $\frac{d}{dt} \left(\bar{f} \times \frac{d\bar{f}}{dt} \right) = \bar{f} \times \frac{d^2 \bar{f}}{dt^2}$ 2
- (d) Show that $\operatorname{grad}\left(\frac{1}{r}\right) = -\frac{\overline{r}}{r^3}$
- (e) Find a unit vector normal to the surface $z = x^2 + y^2$ at the point (1, 2, 5).
- 2. (a) The position vector of a particle is $\overline{r} = 6\hat{i}m$ and its velocity is $\overline{v} = (3\hat{i} + 5\hat{j})m/s$.

Find (i) $\bar{r}.v$, and (ii) $\bar{r}\times\bar{v}$.

(b) Prove that if \overline{a} and \overline{b} are two proper non-collinear vectors and p and q are two scalars such that $p\overline{a} + q\overline{b} = 0$, then p = q = 0.

3

(c) Prove that

$$\left[\overline{A} \times \left(\overline{B} \times \overline{C}\right)\right] + \left[\overline{B} \times \left(\overline{C} \times \overline{A}\right)\right] + \left[\overline{C} \times \left(\overline{A} \times \overline{B}\right)\right] = 0$$

4. (a) State work enero theorem.

3. (a) Show that
$$\nabla(u+v) = \nabla u + \nabla v$$
. 2

- (b) Electric field in a region is zero. What would you conclude about electric potential?
- (c) Define curl of a vector. Show that when a body is in motion, the curl of its linear velocity v at any point is twice the angular velocity. 1+5=6

5. $\pi(a)$: Prove that force $\pi_{m} x_{n}^{2} y \dot{a} - x y z^{2} \dot{k}$ is a

non-conservative force.

GROUP-B

(Mechanics)

Marks: 40

State work energy theorem. Name the fictitious force obtained in the rotating frame of reference. Give one property of a conservative (c) force. would you conclude about electric (d) "When a rotating body contracts, its angular velocity increases." Give reason. (e) Write the physical interpretation of moment of inertia. (f) Can we have equipotential surfaces of the gravitational field of a point mass?

(a) Prove that force $F = x^2 yz\hat{i} - xyz^2\hat{k}$ is a

non-conservative force.

- (b) Show that the inertial masses and gravitational masses are equivalent to each other.
- 6. Answer any two questions: 5×2=10
 - (a) Find the gravitational potential at an outside point of a spherical shell.
 - (b) State and prove the parallel axis theorem in moment of inertia.
 - (c) Find the C.M. of a semicircular disc of radius r.
- 7. Answer any two questions: 10×2=20
 - (a) (i) What do you mean by inertial and non-inertial frame of references?
 - (ii) A frame of reference a rotates with respect to another reference b with uniform angular velocity ω. Show that the fictious force appearing in the accelerated frame of reference can be expressed as a combination of Coriolis force and centrifugal force.

(b) (i) Show that the relationship between the angular momentum relative to C.M. frame of reference of a system of particles and the angular momentum relative to the laboratory frame is given by

$$\overline{L} = \overline{L}_{CM} + \overline{r}_{CM} \times \overline{P}_{OM} \times \overline{Q}_{OM}$$
 (d) 6

- (ii) A body of mass 0.2 kg is revolving along a circular path of radius 1 m with a frequency 4 Hz. Determine the magnitude of orbital angular momentum.
- (c) Show that if a heavy (moving) particle collides elastically with a lighter particle at rest, the particle can never be scattered perpendicular to the initial direction.

(d) Write the difference between a simple pendulum and a compound pendulum.

Derive an expression for time period in a compound pendulum. Show that the centre of suspension and centre of oscillation for a compound pendulum are interchangeable.

2+5+3=10