2021 mutually exclusive

(Held in 2022)

STATISTICS

(Major)

Paper: 1.2

(Probability-I)

Full Marks: 60

Time : Three hours

The figures in the margin indicate full marks for the questions.

- Choose the correct option/Write true or false of the following: 1×7=7
 - (a) Let A and B be two events. If $P(A \cup B) = P(A) + P(B)$ then the events A and B are said to be
 - (i) independent
 - (ii) mutually exclusive
 - (iii) mutually independent
 - (iv) None of the above

- (b) Let A be an event. Then probability of the event A, i.e., $P(A) \ge 0$.
- (c) If A and B are two mutually exclusive events, then $P(A/A \cup B)$ is equal to
 - (i) P(A)

(ii)
$$\frac{P(A)}{P(A)+P(B)}$$

- (iii) $\frac{P(A \cup B)}{P(A)}$
- (iv) None of the above
- (d) Let X be a random variable. Then the distribution function of X, i.e., F(x) always satisfies the relation $F(x) \le 1$.
- (e) Let X be a random variable having probability density function f(x). Then the geometric mean of the random variable is represented by the relation

$$G = \int_{-\infty}^{\infty} \log x \, f(x) \, dx$$

(f) Let X be a random variable. Then the first factorial moment about origin and the first moment about origin are same.

- (g) Let X be a random variable and a be any arbitrary value. Them $M_{X-a}(t)$ is equal to
 - (i) $M_X(at)$
 - (ii) $M_{aX}(t)$
 - (iii) $e^{-at}M_X(t)$
 - (iv) None of the above
- 2. Answer the following questions: 2×4=8
 - (a) If X is a non-negative integer valued variate, then prove that

$$\sum_{k=1}^{\infty} kP(X > k) = \frac{1}{2} \left[E(X^2) - E(X) \right]$$

- (b) A fair die is rolled twice. Let r be the event that the first shows a number ≤ 2 and B the event that the second throw shows at least 4. Describe the event $A \cap B$ and find $P(A \cup B)$.
- (c) The distribution function F of a continuous random variable X is given by

$$F(x) = 0 , x < 0$$

$$= x^{2} , 0 \le x \le \frac{1}{2}$$

$$= 1 - \frac{3(3-x)^{2}}{25} , \frac{1}{2} \le x < 3$$

$$= 1 , x \ge 3$$

Find the p.d.f. of X with comments.

- black balls, a certain number of k balls is drawn and not replaced back, then a ball is drawn from the urn. What is the probability that this is white ball?
- 3. Answer any three of the following questions: 5×3=15
 - (a) A bowl contains four balls, identically in all respects, numbered 1, 2, 3, 4. A ball is chosen at random. Events are defined A_1 , A_2 and A_3 as follows:

Event A_i occurs iff the chosen ball is numbered either i or 4; i = 1, 2, 3

- (i) Examine the independence of A_1 , A_2 and A_3 3
- (ii) Describe in words the events $(A_1 \cup A_2) \cap A_3$
 - (b) An urn contains N balls among which W are white. A random sample of n is drawn without replacement and from this sample another random sample of size m is drawn without replacement. Find that the second sample contains exactly k white balls.

- (c) A communication system consists of n components each of which will independently function with probability p. The total system will be able to operate effectively if at least one-half of the components function. For what value of p is a 5-component system more likely to operate effectively than a 3-component system?
- (d) For a random variable X, prove that

$$E\left(\frac{1}{X}\right) \ge \frac{1}{E(X)}$$

(e) Concentric circles of radius 1cm and 3cm are drawn on a circle of radius 5cm. A man receives 10, 5 or 3 points if he hits the target inside the smaller circle, inside the middle angular region or inside the outer angular region respectively. Suppose the man hits the target with probability $\frac{1}{2}$ and then is just as likely to hit one point of the target as the other. Find the expected number E of points he scores each time he fires.

- 4. Answer any three of the following questions: 10×3=30
 - (a) A random variable X has distribution function

$$F(x) = 0 , x < 0$$

$$= \frac{1 - \cos x}{2}, 0 \le x < \pi$$

$$= 1 , x > \pi$$

- (i) Find the expectation of X.
- (ii) Find the variance of X.
- (iii) Find the median of X.
 - (iv) Find the mode of X.

2½×4=10

(b) Let X be a random variable with probability density function f(x) = c(1-x), 0 < x < 1

Find (i) the value of c, (ii) μ_2 , μ_3 and μ_4 , and (iii) β_1 and β_2 .

- (c) An urn contains N balls of which M are white. A sample of n balls are drawn from the urn. Let A_k be the event that the sample contains exactly k white balls and B_j be the event that the jth ball is white. Find $P(B_j/A_k)$ when the sample is drawn (i) without replacement, and (ii) with replacement.
 - (d) Let the probability P_N that a family has n children be αp^n , $n \ge 1$ and $p_0 = 1 \alpha p \left(1 + p + p^2 + \dots \right)$
 - (i) Show that for $k \ge 1$ the probability that a family contains exactly k boys is $2\alpha p^k / (2-p)^{k+1}$.
 - (ii) Given that a family includes at least one boy, show that the probability that there are two or more boys is p/(2-p). 10
 - (e) Define characteristic function and describe its properties. Obtain cumulant generating functions and its properties, and hence obtain cumulants.

- (f) (i) Define the probability—classical, relative frequency approach and axiomatic approach. Discuss their advantages and disadvantages with examples.
 - (ii) State and prove compound probability rules.

10