Total number of printed pages-7

3 (Sem-6/CBCS) GLG HE 2

2022

GEOLOGY

(Honours Elective)

Paper: GLG-HE-6026

(Introduction to Geophysics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct option: $1 \times 7 = 7$
 - (a) Acceleration due to gravity is maximum at the poles because of
 - (i) polar ice caps
 - (ii) high density
 - (iii) excess mass
 - (iv) flattening of the earth

- (b) Electromagnetic survey gives better results
 - (i) if the top surface layer is more conductive
 - (ii) if the top surface layer is less conductive
 - (iii) if the top surface layer is highly magnetic
 - (iv) Does not depend on any physical parameter of the surface layer
- (c) The lattitude correction in gravity is maximum at
 - (i) 0°
 - (ii) 45°
 - (iii) 60°
 - (iv) 90°
- (d) In seismic refraction method, the refracted waves are picked up by
 - (1) geophone
 - (ii) wave buoy

- (iii) thermometer
- (iv) cohesive soil
- (e) The most suitable geophysical method for groundwater exploration is
 - (i) gravity method
 - (ii) electrical method
 - (iii) magnetic method
 - (iv) seismic method
- (f) Terrane connection for gravity data is required due to
 - (i) topographic undulation about the datum
 - (ii) increase in densities of crustal rocks with depth
 - (iii) lateral density variations
 - (iv) vertical density contrast across Moho

- (g) The geoid can be defined as
 - (i) an oblate spheroid that approximates the shape of the earth
 - (ii) the physical surface of the earth
 - (iii) an equipotential surface of gravity of the earth
 - (iv) None of the above
- (h) Which of the following corrections is always added during reduction of the observed gravity data?
 - (i) Terrane correction
 - (ii) Lattitude correction
 - (iii) Free-air correction
 - (iv) Bouguer correction
- (i) Giger-Muller counter is used in
 - (i) electrical geophysical method
 - (ii) resistivity geophysical method
 - (iii) radiometric geophysical method
 - (iv) None of the above

- (j) Which of the following base metals shows self potential when oxidised
 - (i) Pyrite
 - (ii) Sphalerite
 - (iii) Chalcopyrite
 - (iv) All of the above
- 2. Answer the following questions: (any four)

 2×4=8
 - (a) Write briefly on 'how geology can be interrelated with geophysics'.
 - (b) Differentiate between positive and negative density contrasts.
 - (c) Write a short note on magnetic data correction.
 - (d) Explain the seismic reflection travel
 - (e) State the differences between geoid and the reference sphenoid.
 - Give a brief account on ground-based geophysical survey.

- (g) Write briefly on the principal of seismic refraction method.
 - (h) Draw the residual anomaly curve and give its interpretation.
- 3. Write short notes an the following (any three): 5×3=15
 - (a) Free-air correction of gravity data.
 - (b) Self potential (SP) method of geophysical exploration
 - (c) Ground radiometric survey
 - (d) Application of geophysics in engineering geology
 - (e) Seismic noise
 - (f) Wenner method of resistivity survey
 - (g) Magnetic method of geophysical exploration
 - (h) Profiling and sounding techniques of geophysical exploration

- 4. Answer **any three** of the following questions: 10×3=30
 - (a) Name the physical properties studied in geophysical exploration. Write in detail on seismic and magnetic methods of geographical prospecting. 2+8=10
 - (b) What are the types of electrical methods of geophysical exploration? Elaborate on equipotential and resistivity method of exploration. 2+8=10
 - (c) Write a detailed note on seismic methods of geophysical exploration.
 - (d) Define different gravity anomalies. Illustrate on the corrections considered to rectify the gravity data. 4+6=10
 - (e) Give an account on geophysical field operations.
 - (f) Elaborate on radiometric survey.
 - (g) Explain the role of geophysics in ground-water exploration.
 - (h) Write briefly on regional and residual anomaly.