3 (Sem-3) PHY M 2

2022

PHYSICS

(Major)

Paper: 3.2

(Current Electricity and Magnetostatics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) Write down the Ohm's law that relates the conductivity, current density and electric field.
 - (b) Two inductances of co-efficient of self induction L_1 and L_2 are joined in series. What is the net co-efficient of self induction of the combination?
 - (c) What do you mean by the time constant in series R-C circuit?

- (d) Why no power is dissipated if a voltage of sinusoidal waveform is applied across a purely inductive or capacitive circuit?
- (e) What is copper losses in transformer?
- (f) Write down the Biot-Savart law.
- (g) What is magnetic vector potential?
- 2. Answer the following questions: 2×4=8
 - (a) Set up the e.m.f equation of series LCR a.c circuit.
 - (b) In a certain thermocouple $E = a\theta + b\theta^2$, where θ °C is the temperature of the hot junction, the cold junction being at 0°C, a = 10 microvolts/°C and $b = -\frac{1}{40}$ microvolt/°C. Find the neutral inversion.
 - (c) Explain the differences between a 'deadbeat galvanometer' and 'ballistic galvanometer'.
 - (d) Draw the circuit diagram of Anderson's bridge for the measurement of coefficient of self induction.

- 3. Answer **any three** of the following questions: $5\times3=15$
 - (a) Establish that $\vec{\nabla} \cdot \vec{B} = 0$.
 - (b) Write a short note on rotating magnetic field.
 - (c) An alternating voltage of 220 volts and 50 Hz is applied to a circuit which contains an inductance of 0.2 henry and resistance 10 ohms in series. Determine the potential difference across the resistance and the inductance.
 - (d) The e.m.f of a thermocouple, one junction of which is kept at $0^{\circ}C$, is given by $E = bt + ct^{2}$. Find the neutral temperature and the Peltier and Thomson co-efficient.
- 4. (a) Deduce an expression for self inductance of a long solenoid carrying current.
 - (b) An inductor (L=20mH), a resistor $(R=100\Omega)$ and a cell (E=10V) are connected in series. Find the time elapsed before the current reaches 99% of the maximum value. $[ln\ 100=4.6]$

3

(c) Establish the relation $\pi_2 - \pi_1 = \frac{\pi_1}{T_1} (T_2 - T_1)$ where π_1 and π_2 are Peltier co-efficients.

Or

Why is Wheatstone bridge not suitable for measurement of very low resistance? Describe with circuit diagram how low resistance can be measured using Kelvin's Double Bridge. 2+8=10

- (a) In a region the force $\vec{F} = q(\vec{v} \times \vec{B})$ on a 5. charge q is zero. What conclusions can you draw from this?
 - Using the Biot-Savart law, obtain an expression for the magnetic field due to a long straight conductor carrying steady current.

Or

Define magnetic scalar potential. Obtain an expression for the magnetic scalar potential and hence magnetic field near 2+6+2=10 a current carrying loop.

- Derive an expression to show the growth of electric current in a circuit with resistance and self-inductance.
 - What is meant by resonance in an a.c circuit? In an a.c circuit containing L. C and R in series, find the condition under which the resonance is obtained. 2+3=5

Or

5

What is meant by mutual inductance? Describe with circuit diagram how the mutual inductance can be measured using ballistic galvanometer. 2+8=10

5

6.