3 (Sem-1/CBCS) STA HC 1

2022 STATISTICS

(Honours)

Paper: STA-HC-1016

(Descriptive Statistics)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

1.0	Answer the following questions	as	directed:
	(any seven)		1×7=7

(a)	The point of intersection of the less
	than type' and 'more than type' ogive
	corresponds to

(Fill in the blank)

(b) What do you mean by price relative?

- (c) If x_i/f_i (i=1,2,...,n) is a frequency distribution and $u_i = \frac{x_i a}{h}$, then which one of the following is true
 - (i) $\overline{x} = \overline{u}$
 - (ii) $\overline{u} = h\overline{x}$
 - (iii) $\overline{x} a = h\overline{u}$
 - (iv) $\overline{u} = a\overline{x} + h$

Symbols have their usual meaning.

- (d) Define ordinal data.
- (e) The value of mean deviation is minimum when deviations are taken w.r.t. _____. (Fill in the blank)
- (f) The signs of the two regression coefficients are different.

(State true or false)

(g) For an asymmetrical distribution mean = 5, median = 4. Find the value of mode.

- (h) Write Sheppard's correction for μ_4 .
- (i) Give the definition of variance for a frequency distribution x_i/f_i (i=1,2,...,n).
- (j) State the advantage of coefficient of variation over standard deviation.
- (k) Write two demerits of geometric mean.
- (1) If one of the regression coefficient is 1, the other must be
 - (i) greater than 1
 - (ii) lie between -1 and zero
 - (iii) less than 1
 - (iv) lie between -1 to +1
 (Choose the correct option)
- 2. Answer *any four* of the following questions: 2×4=8
 - (a) Mention two limitations of statistics.
 - (b) Distinguish between frequency and non-frequency data.

- (c) Define multiple correlation and partial correlation for a distribution involving the variables X_1, X_2 and X_3 .
- (d) What do you mean by dichotomous and manifold classification of attributes?
- (e) Prove that Fisher's index number satisfies factor reversal test.
- (f) For what value of A the quantity

$$\sum_{i=1}^n f_i (x_i - A)^2$$

would be minimum? Prove that.

- (g) Define absolute moments and factorial moments.
- (h) Which is the best measure of dispersion and why?
- 3. Answer any three questions: 5×3=15
 - (a) Define raw moments and central moments. Derive the relationship between nth central moment and raw moments about the origin. 2+3=5

- (b) Explain a histogram. How would you draw a histogram when the width of all classes are not equal? State how a histogram is different from a bar diagram.

 2+2+1=5
- (c) Give two values x_1 and x_2 , prove that

$$AM \ge GM \ge HM$$

Also show that

$$HM = (GM)^2 / AM$$
 3+2=5

- (d) (i) Prove that A.M. of the two regression coefficients is greater than the correlation coefficient.
 - (ii) Examine the consistency of the following data:

$$N = 1000, (A) = 600, (B) = 500,$$

 $(AB) = 50$

(iii) When two attributes are said to be positively associated?

2+2+1=5

- (e) (i) Define CLIN. Interprete the result CLIN = 130.50
 - (ii) Mention two sources of secondary data.
 - (iii) What is a box plot ? 2+1+2=5
- (f) How would you determine median graphically by using
 - (i) single ogive
 - (ii) both the ogives ? 2+3=5
- (g) Write a note on skewness and kurtosis including different measures for them and relevant diagrams.
- (h) Find the mean deviation from the mean and standard deviation of A.P. a, a+d, a+2d,...,a+2nd and verify that the latter is greater than the former. 4+1=5

- 4. Answer any three questions: 10×3=30
 - (a) (i) Prove that $-1 \le r_{XY} \le +1$ 3
 - (ii) Are two uncorrelated variables essentially independent. If not, prove it with the help of an example.
 - (iii) Discuss the steps involved in the construction of wholesale price index numbers.
 - (b) (i) If for a random variable X the absolute moment of order k exists for ordinary k = 1, 2, ..., n-1, then the following quantities:

$$\beta_k^{2k} \le \beta_{k-1}^k . \beta_{k+1}^k$$
 and

$$\beta_k^{1/k} \leq \beta_{k+1}^{1/k+1}$$

hold for k = 1, 2, ..., n-1, where β_k is the k^{th} absolute moment about the origin. 4+1=5

(ii) Show that in a discrete series its deviations are small compared with mean μ so that $(x/M)^3$ and higher power of (x/M) are neglected, we have

$$G = M \left(1 - \frac{1}{2} \frac{\sigma^2}{M} \right)$$

where M is the arithmetic mean and G is the geometric mean. 5

(c) (i) Define the measures of association Q and Y and show that

$$Q = \frac{2Y}{1 + Y^2}$$
 2+3=5

(ii) Write the properties of multiple correlation coefficient. What is the significance of partical correlation coefficient in regression analysis?

- (d) (i) Describe the term 'deflation' in index number.
- (ii) Find the angle between two lines of regression and interprete the result for r = 0 and $r = \pm 1$. 4+1=5
- (iii) The regression equation of x on y is

$$3y - 5x + 180 = 0$$

Given that $\overline{y} = 4$, $\sigma_x^2 = \frac{9}{16}$ and

$$n = 4. \text{ Find } r \text{ and } \overline{x}.$$

- (e) (i) Show that Laspeyre's and Paasche's index numbers do not satisfy the time and factor reversal tests of consistency.
 - (ii) Interpret the meaning of the statement

$$byx = -0.53$$

9

- (iii) Distinguish between observational studies and controlled experiment with example.
 - (f) (i) Discuss the method of least squares for fitting a straight line Y = a + bx.
 - (ii) Find the regression line of Y on X.
 At which point this line intersects the regression line of X on Y.

4+1=5

(g) (i) Write a note on Sheppard's correction for moments. Define Pearson's β and γ coefficient.

3+2=5

- (ii) Show that in usual notation $1 R_{1.23}^2 = \left(1 r_{12}^2\right) \left(1 r_{13.2}^2\right)$ 3
 - (iii) Define partial correlation coefficient.

- (h) (i) Write a note on scrutiny of data for internal consistency and detection of errors.
 - (ii) Give idea of cross-validation. 2
 - (iii) Write a note on chain index numbers.