3 (Sem-1/CBCS) STA HC 2

2022 o 200 M

STATISTICS

(Honours)

Paper: STA-HC-1026

(Calculus)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: (any ten) $1 \times 10 = 10$
 - (a) If a function is derivable at all points of an interval except the ends points, it is said to be derivable in the open interval. (State True or False)
 - (b) The value of the integral

$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx \text{ is}$$

(i) $\beta(m,n)$

- (ii) $\beta(n,m)$
- (iii) Both (i) and (ii)
- (iv) None of the above (Choose the incorrect option)
- (c) The nth derivative of a^x is
 - (i) ax
 - (ii) $(\log_e a)^n a^x$
 - (iii) nax
 - (iv) None of the above (Choose the correct option)
- (d) Evaluate $\int_{0}^{\infty} e^{-3x} x^{\frac{1}{2}} dx$
- (e) The differential equation

$$\left(\frac{d^2y}{dx^2}\right)^2 - 2\left(\frac{dy}{dx}\right)^2 + 5y = 0 \text{ is of order}$$
and degree ____.

(Fill in the blanks)

(f) State two properties of definite integrals.

- (g) Define homogeneous function of two variables.
- (h) If $f(x,y) = x^4 + xy + y^4$ find f_x and f_{yx} .
- (i) The value of

$$\lim_{x\to\infty}\frac{x^2}{e^x}$$
 is

- (i) we see the second content to
- (ii) O POLEST HIM AND ALL AND
- (iii) $\frac{\infty}{\infty}$
- (iv) None of the above (Choose the correct option)
- (j) Write two properties of double integrals.
- (k) The differential equation

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = z + xy$$
 is called

- (i) ordinary differential equation
- (ii) partial differential equation
- (iii) None of the above (Choose the correct option)

- (l) Find the differential equation of all the straight lines passing through the origin.
- (m) Define beta integral of second kind.
- (n) Lagrange's undetermined multipliers is a method of finding the _____ or ___ of a function subject to one or more conditions. (Fill in the blanks)
- (o) Define Jcobian of the functions $u_1, u_2...u_n$ with respect to $x_1, x_2...x_n$.
- (p) The value of (n+1) is
 - (i) n!
 - (ii) $n1^{-}(n)$
 - (iii) Both (i) and (ii)
 - (iv) (n-1)!

(Choose the incorrect option)

(q) The function x^n is continuous for all values of x when n is positive and continuous for all values of x except 0 when n is negative.

(State True or False)

(r) Define bounded function.

- 2. Answer **any five** of the following questions: $2 \times 5 = 10$
 - (a) Test the differentiability of the function

$$f(x) = \begin{cases} 1+x, & \text{if } x \le 2\\ 5-x, & \text{if } x > 2 \end{cases}$$
at $x = 2$

- (b) Find the *n*th differential coefficients of $\sin^3 x$.
- (c) If $f(x) = x \cdot \frac{e^{\frac{1}{x}} e^{-\frac{1}{x}}}{e^{\frac{1}{x}} + e^{-\frac{1}{x}}}$, $x \ne 0$ and f(0) = 0,

show that f(x) is continuous at x = 0.

(d) Find the value of

$$\lim_{x\to 0}\frac{\sin x-x}{x^3}$$

- (e) Show that $f(x) = 2x^3 21x^2 + 36x 20$ has a maximum at x = 1.
- (f) Prove that $\beta(m,n) = \beta(m+1, n) + \beta(m, n+1)$
- (g) Solve the

$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} - \frac{dy}{dx} + y = 0$$

(h) Prove that

$$\int_{0}^{\pi/2} \sqrt{\tan \theta} \ d\theta = \frac{\pi}{\sqrt{2}}$$

- (i) If $x^3 + 3x^2y + 6xy^2 + y^3 = 1$, find $\frac{dy}{dx}$.
- (j) If u be a homogeneous function of x and y of degree n, then show that

$$x\frac{\partial^2 u}{\partial x^2} + y\frac{\partial^2 u}{\partial x \partial y} = (n-1)\frac{\partial u}{\partial x}$$

- 3. Answer any four from the following questions: 5×4=20
 - (a) Show that the function f(x)=|x|+|x-1| is not differentiable at x=1 but differentiable at n=2.
 - (b) If $y = e^{a \sin^{-1} x}$, prove that $(1 x^2) y_{n+2} (2n+1) x y_{n+1} (n^2 + a^2) y_n = 0$
 - (c) If $u = log(x^3 + y^3 + z^3 3xyz)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$

6

(d) Find the solution

$$\lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$$

(e) If f_x and f_y are both differentiable at a point (a,b) of domain of definition of a function f, then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

(f) Solve the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{5x}$$

(g) If 0 < n < 1, then show that

$$\lceil (n) \rceil \lceil (1-n) = \frac{\pi}{\sin n\pi}$$

Hence show that $\left[-\left(\frac{1}{2}\right) = \sqrt{\pi} \right]$

(h) Evaluate

$$\int_{0}^{\pi/2} \int_{\pi/2}^{\pi} \cos(x+y) dy dx$$

7

- 4. Answer **any four** from the following questions: 10×4=40
 - (a) (i) Prove that

$$\int_{-a}^{a} f(x)dx = 0, \text{ if } f(x) \text{ is and odd}$$

x function of x.

$$= 2 \int_{0}^{a} f(x) dx, \text{ if } f(x) \text{ is}$$
an even function of
$$(x).$$

(ii) Using properties of definite integral prove that

$$\int_{0}^{\pi/2} \log \sin x \, dx = \frac{\pi}{2} \log \frac{1}{2}$$

- (b) (i) Find the differential coefficient of $x^x + (\sin x)^{\log x}$ 5
 - (ii) If $y = e^x \log x$, show that in usual notation

$$xy_2 - (2x-1)y_1 + (x-1)y = 0$$
 5

(c) (i) If
$$f(x,y) = \frac{2xy(x^2 - y^2)}{x^2 + y^2}$$
, $(x,y) \neq (0,0)$

f(0,0) = 0, find $f_x(0,0)$ and $f_y(0,0)$ 5

(ii) If
$$u = log \left\{ \frac{x^2 + y^2}{x + y} \right\}$$
, prove that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$$
 5

- (d) (i) Explain general solution of Clairaut's equation. 4
 - (ii) Solve the equation (px-y)(x-yp)=2p to Clairaut's form by the substitution $x^2=u$, $y^2=v$, and find its solution. 6
- (e) (i) Show that

$$\int_0^{\pi/2} \frac{dx}{\sqrt{\sin x}} \times \int_0^{\pi/2} \sqrt{\sin x} \, dx = \pi$$
 6

(ii) Prove that

$$\int_0^1 x^m (\log x)^n dx = \frac{(-1)^n n!}{(m+1)^{n+1}}$$

- (f) (i) Explain the procedure of equations solvable for p and y.
 - (ii) Solve the differential equation

$$\left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} - 56 = 0$$

- (g) (i) State the necessary and sufficient condition for extreme value of a function of two variables.
 - (ii) Find the maximum value of $f(x,y) = 3x^2 y^2 + x^3$
- (h) Prove that

$$\int_{0}^{1} dx \int_{0}^{1} \frac{x - y}{(x + y)^{3}} dy \neq \int_{0}^{1} dy \int_{0}^{1} \frac{x - y}{(x + y)^{3}} dx$$

(i) The roots of the equation $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0 \text{ in } \lambda \text{ are } u, v, w. \text{ Prove that }$

$$\frac{\partial(u\ v\ w)}{\partial(x,y,z)} = -2\frac{(y-z)(z-x)(x-y)}{(v-w)(w-u)(u-v)}$$

- (i) (i) Define partial differential equation.
 - (ii) Solve the partial differential equations

(A)
$$\left(\frac{y^2z}{x}\right)p + xzq = y^2$$
 5

(B)
$$xp+yq=z$$
 4