3 (Sem-4/CBCS) CSC HC1

2022

COMPUTER SCIENCE

(Honours)

Paper: CSC-HC-4016

(Design and Analysis of Algorithms)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer the following questions as directed:
 (any seven) 1×7=7
 - (a) The non-ambiguity requirement for each step of an algorithm can be compromised. (State True or False)
 - (b) An algorithm is said to be correct if, for every input instance, it halts with the correct output.

(State True or False)

- When we have only an asymptotic upper bound, we use
 - O-notation (big O)
 - Θ -notation (big Theta) (ii)
 - Ω-notation (big Omega)
 - (iv) ω -notation (little omega) (Choose the correct option)
- (d) Which of the following sorting algorithms use divide-and-conquer technique?
 - Quick sort
 - (ii) Radix sort
 - Merge sort
 - (iv) Both (i) and (ii) (Choose the correct option)
- Which of the following uses the largest amount of auxiliary space for sorting?
 - Bubble sort
 - Counting sort
 - (iii) Quick sort
 - (iv) Heap sort

(Choose the correct option)

In a red-black tree, if a node is red. then both its children are black. (State True or False)

A red-black tree with n internal nodes has height at most $2 \log (n+1)$. (State True or False)

- (h) Which of the following is not the algorithm to find the minimum spanning tree of the given graph?
 - Prim's algorithm
 - Kruskal's algorithm
 - (iii) All of the above
 - (iv) None of the above (Choose the correct option)
- data structure is used in (i) depth-first search algorithm. (Fill in the blank)
- KMP is a linear-time string-matching (i) algorithm. (State True or False)

3

- 2. Answer the following questions: (any four)
 - (a) What is greedy algorithm?
 - (b) What is dynamic programming?
 - (c) What is worst case and average case running time for bucket sort algorithm?
 - (d) When does insertion sort take maximum time and minimum time?
 - (e) When is a sorting algorithm said to be stable?
 - (f) Why is counting sort algorithm not a comparison-based algorithm?
 - (g) Why is red-black tree said to be a self-balancing tree?
 - (h) State any two differences between DFS and BFS.

- 3. Answer **any three** of the following questions: $5\times3=15$
 - (a) What is meant by efficiency of an algorithm? How is efficiency measured?
 - (b) How to prove that an algorithm is correct?
 - (c) What does dynamic programming have in common with divide-and-conquer? What is a principal difference between them?
 - (d) How does divide-and-conquer algorithm work?
 - (e) Write down the steps of bubble sort algorithm.
 - (f) Does Prim's algorithm always work correctly on graphs with negative edge weights?
 - (g) State the properties of a red-black tree.
 - (h) Explain the working of Kruskal's algorithm using an example.

- 4. Answer any three of the following questions: 10×3=30
 - (a) Use the bubble sort to put the numbers 3, 2, 4, 1, 9, 5 into ascending order. Illustrate the output of each pass clearly.
 - (b) Write the quick sort algorithm.
 - (c) Consider the following values stored in an array. Sort it in ascending order using heap sort technique showing all the iterations.

1, 9, 2, 8, 6, 5, 3, 4

- (d) Show the red-black trees that result after successively inserting the keys 41, 38, 31, 12, 19, 8 into an initially empty red-black tree.
- (e) Write the pseudocode for deleting a node from a red-black tree.
- (f) Write down the steps of binary search algorithm.

- (g) Write down the steps of DFS and BFS algorithms.
- (h) Write pseudocode for Knuth-Morris-Pratt matching algorithm.