3 (Sem-4/CBCS) STA HC 1

2022

STATISTICS

(Honours)

Paper STA-HC-4016

(Statistical Inference)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer the following questions as directed:
 (any seven) 1×7=7
 - (a) If T is an unbiased estimator for θ , then T^2 is a biased estimator for θ^2 .

 (State true or false)
 - (b) Estimators by the method of moments are not in general consistent and efficient. (State true or false)

- (c) Type I error is accepting H_0 , when H_0 is false. (State true **or** false)
- (d) In sampling from a $N(\mu, \sigma^2)$ population, the sample mean is a/an estimator of μ .

 (Fill up the blank)
- (e) Let $x_1, x_2, ... x_n$ be the sample observations constitute a space called the
 - (i) critical region
 - (ii) sample space
 - (iii) Both (i) and (ii)
 - (iv) None of the above (Choose the correct option)
- (f) Area of critical region depends on
 - (i) level of significance
 - (ii) size of type II error
 - (iii) calculated value of the test statistic.
 - (iv) None of the above (Choose the correct option)

- (g) Neyman-Pearson lemma provides
 - (i) an unbiased test
 - (ii) a most powerful test
 - (iii) an admissible test
 - (iv) None of the above (Choose the correct option)
- (h) In 1933, the theory of testing of hypothesis was profounded by —————. (Fill up the blank)
- (i) Maximum likelihood estimators are always consistent estimators but need not be unbiased.

(State true or false)

- (j) If of the two consistent estimators T_1 , T_2 of a certain parameter θ , we have $V\left(T_1\right) < V\left(T_2\right)$ for all n then for all sample sizes
 - (i) T_1 is more consistent than T_2
 - (ii) T_2 is more consistent than T_1
 - (iii) T_1 is more efficient than T_2
 - (iv) T_2 is more efficient than T_1 (Choose the correct option)

- 2. Answer the following questions: (any four) 2×4=8
 - (a) Describe best critical region for a test.
 - (b) Find the maximum likelihood estimator (MLE) of θ for the following probability distribution:

$$f(x,\theta) = \theta e^{-\theta x}, x > 0, \theta > 0$$

- (c) Write short notes on simple and composite hypotheses.
- (d) If $x_1, x_2,...x_n$ is a random sample from a normal population $N|\mu,1$, then show that $t = \frac{1}{n} \sum_{i=1}^{n} x_i^2$ is an unbiased estimator of $\mu^2 + 1$.
 - (e) Prove that in sampling from a $N(\mu, \sigma^2)$ population, the sample mean is a consistent estimator of μ .
 - (f) Write down the condition for the Cramer-Rao lower bound for the variance of the estimator to be attained.

- (g) State two asymptotic properties of likelihood ratio (LR) test.
- (h) Differentiate between estimator and estimate.
- 3. Answer the following questions: (any three) 5×3=15
 - (a) If $X_1, X_2, X_3, ... X_n$ are random observations on a Bernoulli variate X taking the value 1 with probability P and the value O with probability (1-P), show that

$$\frac{\sum x_i}{n} \left(1 - \frac{\sum x_i}{n} \right)$$
 is a consistent estimator of $P(1-P)$.

- (b) State and prove the invariance property of consistent estimator.
- (c) Define minimum variance unbiased estimator (MVUE). If T_1 is an MVUE for θ and T_2 is any other unbiased estimator of θ with efficiency e, then show that no linear combination of T_1 and T_2 is an MVUE.

- (d) Obtain the minimum variance bound (MVB) estimator for μ in normal population $N(\mu, \sigma^2)$, where σ^2 is known.
- (e) State the regularity conditions for Cramer-Rao inequality.
- (f) State and prove Neyman-Pearson lemma.
- (g) State Neyman's factorization theorem. Let $(X_1, X_2, \dots X_n)$ denote a random sample from a distribution with p.d.f. $f(x,\theta) = \theta x^{\theta-1}$, 0 < x < 1, $\theta > 0$ show that the product $(X_1, X_2, \dots X_n)$ is a sufficient statistic for θ .

(h) Examine whether a best critical region exists for testing the null hypothesis $H_0: \theta = \theta_0$ against the alternative hypothesis $H_1: \theta > \theta_0$ for the parameter θ of the distribution

$$f(x,\theta) = \frac{1+\theta}{(x+\theta)^2}, 1 \le x \le \alpha$$

- 4. Answer **any three** of the following:

 10×3=30
 - (a) (i) If $\{T_n\}$ be a sequence of estimators such that for all $\theta \in \mathbb{H}$, $E_{\theta}(T_n) \to r(\theta), n \to \alpha$ and $Var\theta(T_n) \to 0$, as $n \to \alpha$, then ' T_n ' is a consistent estimator of $r(\theta)$.
 - (ii) Write a note on Blackwellization process.

(b) (i) Explain the concept of unbiasedness and efficiency. A random sample $(X_1, X_2, X_3, X_4, X_5)$ of size 5 is drawn from a normal population with unknown mean μ . Consider the following estimators to estimate μ :

$$T_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$

$$T_2 = \frac{X_1 + X_2}{2} + X_3$$

$$T_3 = \frac{2X_1 + X_2 + \lambda X_3}{3}$$

where λ is such that T_3 is an unbiased estimator of μ .

- (1) Find λ
- (2) Are T_1 and T_2 unbiased estimators?
- (3) Which is the best estimator among T_1 , T_2 and T_3 ?

(ii) If $x \ge 1$ is the critical region for testing $H_0: \theta = 2$ against the alternative $\theta = 1$, on the basis of the single observation from the population

 $f(x, \theta) = \theta e^{-\theta x}$; $0 \le x \le \infty$, obtain the values of type I error.

(c) Given the probability density function

(c) Given the probable
$$f(x:\theta) = \left[\pi\left\{1+(x-\theta)^2\right\}^{-1}; -\alpha < x < \alpha, -\alpha < \theta < \alpha;$$
 show that the Cramer-Rao lower bound of variance of an unbiased estimator of θ is $2/n$, where n is the size of the random sample from this distribution.

(d) Show that for normal distribution with zero mean and variance σ^2 , the best critical region for $H_0: \sigma = \sigma_0$ against the alternative $H_1: \sigma = \sigma_1$ is of the form

$$\sum_{i=1}^{n} x_i^2 \le a_\alpha \text{ for } \sigma_0 > \sigma_1 \text{ and}$$

$$\sum_{i=1}^{n} x_i^2 \ge b_\alpha \text{ for } \sigma_0 > \sigma_1$$

- (e) Explain the likelihood ratio test. Let $x_1, x_2, ... x_n$ be a random sample from $N(\mu, \sigma^2)$, where σ^2 is known. Develop likelihood ratio test for $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$.
- Of Use the Neyman-Pearson lemma to obtain the critical region for testing $\theta=\theta_0$ against $\theta=\theta_1$ for $\theta_1>\theta_0$ and $\theta_1<\theta_0$. Show that there exists no uniformly most powerful (UMP) test for testing $\theta=\theta_0$ against $\theta_1\neq\theta_0$ for the following pdf:

$$f(x,\theta) = \theta e^{-\theta x}, x > 0$$

hypothesis? Explain the concepts of type I and type II errors. Show that a most powerful test is necessarily unbiased.

1+(2+2)+5=10

- (h) Write short notes on: (any two)

 5×2=10
 - (i) Method of minimum χ^2
 - (ii) Uniformly most powerful test
 - (iii) Sequential probability ratio test (SPRT)