3 (Sem-5/CBCS) MAT HC 2

2022

MATHEMATICS

(Honours)

Paper: MAT-HC-5026

(Linear Algebra)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any ten questions: 1×10=10
 - (i) "A plane in \mathbb{R}^3 not through the origin is a subspace of \mathbb{R}^3 ."

(State True or False)

- (ii) If the equation AX = 0 has only the trivial solution then what is the null space of A?
- (iii) Suppose two matrices are row equivalent. Are their row spaces the same?

- (iv) Let A be matrix of order $m \times n$. When the column space of A and \mathbb{R}^m are equal?
- (v) Is the set $\{sint, cost\}$ linearly independent in C[0, 1]?
- (vi) What is the dimension of zero vector space?
- (vii) If A is a 7 × 9 matrix with a twodimensional null space, what is the rank of A?
- (viii) "0 is an eigenvalue of a matrix A if and only if A is invertible."

(State True or False)

- (ix) Let A be an $n \times n$ matrix such that determinant of A is zero. Is A invertible?
- (x) When two matrices A and B are said to be similar?
- (xi) Define complex eigenvalue of a matrix.
- (xii) Let an $n \times n$ matrix has n distinct eigenvalues. Is it diagonalizable?
- (xiii) What do you mean by distance between two vectors in \mathbb{R}^n ?

- (xiv) Which vector is orthogonal to every vector in \mathbb{R}^n ?
- (xv) Is inner product of two vector u and v in \mathbb{R}^n commutative?
- (xvi) "An orthogonal matrix is invertible." (State True or False)
- (xvii) If the number of free variables in the equation Ax = 0 is p, then what is the dimension of null space of A?
- (xviii) Let T be a linear operator on a vector space V. Is the subspace of {0} of V
 T-invariant?
- 2. Answer any five questions: 2×5=10
 - (i) Show that the set H of all points of \mathbb{R}^2 of the form (3r, 2+5r) is not a vector space.

(ii) Let
$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$
 and let

$$u = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$
. Is u in null space of A ?

- (iii) In \mathbb{R}^3 , show that the set $W = \left\{ (a, b, c) : a^2 + b^2 + c^2 \le 1 \right\} \text{ is not a subset of } V.$
- (iv) Let $P_1(t)=1$, $P_2(t)=t$, $P_3(t)=4-t$. Show that $\{P_1, P_2, P_3\}$ is linearly dependent in the vector space of polynomials.
- (v) Let $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$. Examine whether u is a eigenvector of A.
- (vi) The characteristic polynomial of a 6×6 matrix is $\lambda^6 4\lambda^5 12\lambda^4$. Find the eigenvalue of the matrix.
 - (vii) Show that the eigenvalues of a triangular matrix are just the diagonal elements of the matrix.
 - (viii) Let v = (1, -2, 2, 0). Find a unit vector u in the same direction as v.
- (ix) Let $u = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$. Compute $\frac{u \cdot v}{u \cdot u}$.

- (x) Suppose $S = \{u_1, u_2, ..., u_n\}$ contains a dependent subset. Show that S is also dependent.
- 3. Answer any four questions: 5×4=20

(i) Let
$$A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$$
. Find a non-

zero vector in column space of A and a non-zero vector in null space of A.

- (ii) If a vector space V has a basis $B = \{b_1, b_2, ..., b_n\}$, then prove that any set in V containing more than n vectors must be linearly dependent.
- (iii) Let $B = \{b_1, b_2, ..., b_n\}$ be a basis for a vector space V, then prove that the co-ordinate mapping $x \rightarrow [x]_B$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

- (iv) Prove that similar matrices have the same characteristic polynomial and hence the same eigenvalues.
- (v) Is 5 an eigenvalue of $A = \begin{bmatrix} 6 & -3 & 1 \\ 3 & 0 & 5 \\ 2 & 2 & 6 \end{bmatrix}$?

(vi) Let
$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{-2}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$$
 and $x = \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix}$. Show

that U has orthonormal columns and ||Ux|| = ||x||.

(vii) Find a QR factorization of

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

(viii) Find the range and kernel of

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $\begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} \frac{x+y}{x-y} \end{bmatrix}$.

- 4. Answer any four questions: 10×4=40
 - (i) Find the spanning set for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -1 \end{bmatrix}.$$

- (ii) Let $S = \{v_1, v_2, ..., v_r\}$ be a set in a vector space V over \mathbb{R} and let $H = span \{v_1, v_2, ..., v_r\}$. Prove that—
 - (a) if one of the vectors in S is a linear combination of the remaining vectors in S, then the set formed from S by removing that vector still spans H;
 - (b) if $H \neq \{0\}$, some subset of S is a basis for H.

5+5=10

(iii) Let V be the vector space of 2×2 symmetric matrices over \mathbb{R} . Show that $\dim V = 3$. Also find the co-ordinate vector of the matrix

$$A = \begin{bmatrix} 4 & -11 \\ -11 & -7 \end{bmatrix}$$
 relative to the basis

$$\left\{ \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 4 & -1 \\ -1 & -5 \end{bmatrix}. \right.$$

5+5=10

- (iv) Define a diagonalizable matrix. Prove that an $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvector. 1+9=10
- (v) (a) Show that λ is an eigenvalue of an invertible matrix A if and only if λ^{-1} is an eigenvalue of A^{-1} .
- (b) If $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of A, then show that $k\lambda_1, k\lambda_2, ..., k\lambda_n$ are the eigenvalues of kA.
 - (c) Show that the matrices A and A^T (transpose of A) have the same eigenvalues.

8

5+21/2+21/2=10

- (vi) Compute A^8 where $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$.
- (vii) Define orthogonal set and orthogonal basis of \mathbb{R}^n . Show that $S = \{u_1, u_2, u_3\}$ is an orthogonal basis for \mathbb{R}^3 . Also

express the vector
$$y = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$$
 as a linear

combination of the vector in S. (1+1)+5+3=10

- (viii) Let V be an inner product space. Show that—
 - (a) $\langle v, 0 \rangle = \langle 0, v \rangle = 0$;
 - (b) $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$ where $u, v, w \in V$;
 - (c) Define norm of a vector in V;
 - (d) For u, v in V, show that $|\langle u, v \rangle| \le ||u|| ||v||$.

2+2+1+5=10

(ix) What do you mean by Gram-Schmidt process? Prove that if $\{x_1, x_2, ..., x_p\}$ is a basis for a subspace W or \mathbb{R}^n and define $v_1 = x_1$

$$v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_2} \ v_1$$

$$v_3 = x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2$$

$$v_p = x_p - \frac{x_p \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_p \cdot v_2}{v_2 \cdot v_2} v_2 - \dots \frac{x_p \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}$$

then $\{v_1, v_2, ... v_p\}$ is an orthogonal basis for W. Also if $W = span\{x_1, x_2\}$

where
$$x_1 = \begin{bmatrix} 3 \\ 6 \\ 6 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Construct an

orthogonal basis $\{v_1, v_2\}$ for W.

(x) Define orthogonal complement of a subspace. Let $\{u_1, u_2, ... u_5\}$ be an orthogonal basis for \mathbb{R}^5 and $y = c_1 u_1 + ... + c_5 u_5$. If the subspace $W = span \{u_1, u_2\}$ then write y as the sum of vectors Z_1 in W and a vector Z_2 in complement of W. Also find the distance from y to $W = span \{u_1, u_2\}$,

where
$$y = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}$$
, $u_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$.
 $1+6+3=10$