3 (Sem-6/CBCS) CHE HC 1

2023

CHEMISTRY

(Honours Core)

Paper: CHE-HC-6016

(Inorganic Chemistry-IV)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following: 1×7=7
 - (a) What are fluxional organometallic compounds?
 - (b) The most suitable route to prepare the trans- isomer of [PtCl₂(NH₃)(PPh₃)] is:
 - (i) $[PtCl_4]^{2-}$ with PPh_3 followed by reaction with NH_3
 - (ii) $[PtCl_4]^{2-}$ with NH_3 followed by reaction with PPh_3

- (iii) $[P(NH_3)_4]^{2+}$ with HCl followed by reaction with PPh₃
- (iv) $[P(NH_3)_4]^{2+}$ with PPh_3 followed by reaction with HCl
- (c) $|Ni(CN)_4|^2$ is kinetically _____ but thermodynamically _____.
- (d) 'Low spin complexes are labile but prefer associative mechanism'.

[True or False]

- (e) How many metal-metal (M-M) bonds are there in $lr_4(CO)_{12}$?
- (f) Why metal-carbonyl complexes always obey 18 election rule?
- (g) Why interfering radicals do not interfere till group II in the analysis of basic radicals?
- 2. Explain why/how: 2×4=8
 - (a) Square planar complexes are generally labile.
 - (b) Solubility product plays an important role in qualitative analysis.
 - (c) Direct nitration of ferrocene is not possible.
 - (d) Ferrocene undergoes electrophilic substitution 10⁶ times faster than benzene.

3. Answer any three of the following:

5×3=15

- (a) Discuss the dissociative nucleophile substitution reaction in the light of CFT.
- (b) Discuss the methods of removal of fluoride and phosphate ions during the qualitative analysis of salt mixtures.

21/2+21/2=5

- (c) Explain the mechanism of inner sphere redox reaction of coordination compounds.
- (d) Write the plausible mechanism for the catalytic hydrogenation of alkenes using Wilkinson's catalyst, ClRh(PPh₃)₃. Identify the reaction type of each step.
- (e) Discuss the bonding in M-CO fragments. How, IR spectra can be used to distinguish between terminal and bridging CO groups?

 3+2=5
- 4. Answer any three of the following:

10×3=30

- (a) Write notes on the following: $5\times2=10$
 - (i) Multicenter bonding in methyllithium.
 - (ii) Stepwise and overall formation constants of a reaction.

- (b) The compound $W(\eta^5-C_5H_5)((H)(CO)_3)$ reacts with C_3H_6 to give three products A, B and C. Identify and draw the structure of compounds A, B and C. Each compound obeys the 18-electron rule.
- (c) For the following species, calculate the number of electrons in the valance shell, give their reasonable structures and comment on their relative stabilities.

 2½×4=10

(i)
$$(\eta^6 - C_6 H_6)_2 Fe$$

(ii)
$$\left[C_p(CO)_2Fe\right]_2$$

(iii)
$$Mn_2(CO)_{10}$$

(iv)
$$Fe_3(CO)_{12}$$

- (d) Discuss the preparation and structure of ferrocene. Explain the mechanism of acetylation reaction. 2½+2½+5=10
- (e) On the basis of VBT, how will you explain lability and inertness of transition metal complexes? Discuss how the following factors affect the lability of a complex: 4+(2×3)=10

 (i) Geometry of the complex
 - (ii) Oxidation state of the metal ion
 - (iii) Ionic radius
- (f) What are metal alkyls? Discuss the structural features of methyl lithium and trialkyl aluminium. 2+4+4=10