2018

CHEMISTRY

(Major)

Paper : 2.1

(Physical Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following as directed: $1 \times 7 = 7$
 - (a) State True or False:

 "Gases can be liquefied by applying pressure at any temperature."
 - (b) Find the critical volume of helium gas. $(b = 0.01927 \text{ dm}^3 \text{ mol}^{-1}).$
 - (c) If c_0 is the speed of light in vacuum and c is the speed of light in a medium, then what will be the expression for refractive index of the medium?

8A**/738**

(Turn Over)

- (d) Choose the correct answer:

 At the same temperature, 0.01 M solution of urea is isotonic with
 - (i) 0.01M NaCl solution
 - (ii) 0.01M MgCl₂ solution
 - (iii) 0.01M glucose solution
 - (iv) 0.01M sodium acetate solution
- (e) Choose the correct answer: If ΔT_b is the elevation in boiling point for an electrolytic solution and ΔT_b° is elevation of the boiling point for a non-electrolyte solution of the same concentration in the same solvent, then the van't Hoff factor is given by
 - (i) $\Delta T_b \times \Delta T_b^{\circ}$
 - (ii) $\Delta T_b^{\circ} / \Delta T_b$
 - (iii) $\frac{\Delta T_b \Delta T_b^{\circ}}{2}$
 - (iv) $\Delta T_b / \Delta T_b^{\circ}$
- (f) Define molar conductivity of an electrolytic solution.
- (g) Give the condition for maximum buffer capacity of a buffer solution.

8A/738

(Continued)

2.	Answer	the	following	questions		1.10	2×4=8
----	--------	-----	-----------	-----------	--	------	-------

- (a) For a monatomic ideal gas, show that the molar heat capacity at constant volume is 12.471 JK⁻¹ mol⁻¹.
- (b) A liquid P has half the surface tension of liquid Q. Again the density of liquid P is twice the density of liquid Q. If in a capillary tube P rises to 10.0 cm, what will be the rise of liquid Q in the same capillary tube when inserted identically at the same temperature?
 - (c) Define ideal solutions. Give the values of ΔV and $\Delta_{mix} H$ for an ideal solution.
 - (d) What are concentration cells? Give one suitable example of concentration cell with transference.
- 3. Answer the following questions (any *three*): 5×3=15
 - (a) (i) Give the postulates of kinetic molecular theory of gases.
 - (ii) Give the limitations of van der
 Waals equation of state. 2

8A/738

(Turn Over)

(b)	What is 'degrees of freedom' of molecule? Calculate the various dego of freedom of the following molecu	rees
	(i) CO ₂	
	CO H-O Hall and S blood A	

Give the principle of the stalagmometer method of determination of (c) surface tension of a liquid.

3

(ii) The numbers of drops of water and an organic liquid in drop number method from a stalagmometer are 100 and 200 respectively. Calculate the surface tension of the organic liquid at 298 K. Given that at 298 K, the surface tension of water is 7.28×10^{-3} N m⁻¹, density of water is 1.0 kg dm⁻³ and density of the organic liquid is 0.9 kg dm^{-3} .

2

(i) What is limiting molar conduc-(d) tivity? State the Kohlrausch law of the independent migration of ions.

2

(ii) The limiting molar conductances of Al^{3+} and SO_4^{2-} are 189 S cm² mol⁻¹ and 160 S cm² mol⁻¹ respectively. Calculate the molar limiting conductance of Al₂(SO₄)₃.

3

8A/738

(Continued)

	() «(n) :	Define degree of dissociation of a	
	(e) (1)	weak electrolyte.	,]
	i ibos el	State Ostwald's dilution law. Explain the law with the help of a suitable example.	4
4.	(a) Ans	wer either [(i) and (ii)] or [(iii) and (iv)]:	
	(i)	Derive the equation of confession ponding states. Justify why this equation can be considered as a	
	510300116	generalized equation of state for a gas.	5
	(ii)	Derive an expression for osmotic pressure of a dilute solution from thermodynamic consideration.	5
	(iii)	What are transport properties of gas? Using kinetic theory, derive an expression for self-diffusion coefficient of a gas.	5
	+ [Discuss the construction of a calomel electrode. Explain the reaction taking place in the electrode.	5
	(b) Ans	wer either [(i), (ii) and (iii)] or [(iv), (v) (vi)] :	
	(i)	Define the terms collision cross- section and mean free path.	3
			_

(ii) What are liquid crystals? Mention the uses of liquid crystals.	4
(iii) A solution, composed of $0.05M$ of an organic acid and $0.5M$ of its sodium salt, gives a pH of 5.5 at 298 K. Calculate the dissociation constant of the acid.	. 3
(iv) Explain the terms activity and activity coefficient.	2
(v) Discuss briefly about the structure of liquid crystals.	
(vi) What is ionic strength of an electrolytic solution? Calculate the ionic strength of 0.01 mol kg ⁻¹ H ₂ SO ₄ solution.	4 3=4
(c) Answer either [(i) and (ii)] or [(iii) and (iv)]:	•
(i) What is buffer capacity of a buffer solution? Explain the term buffer action with the help of a suitable example.	4= 5
(ii) Define electrode potential. Calculate the single electrode potential at 298 K of a half-cell for zinc electrode dipped in 0:01 M	
ZnSO ₄ solution. Given	

 $E_{\text{Zn}^{2+}|\text{Zn}}^{\circ} = -0.763 \text{ volt}$

8A/738

(Continued)

1+4=5

- (iii) What are fuel cells? Write the electrode reactions of hydrogen-oxygen fuel cell. Calculate the standard e.m.f. of hydrogen-oxygen fuel cell. Mention one use of fuel cell.
- (iv) Explain briefly how equilibrium constant can be calculated from the measurement of standard electrode potential.

* * *

4