2018

CHEMISTRY

(Major)

Paper: 2.2

(Organic Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any seven questions :

 $1\times7=7$

- (a) Explain, why β-keto acids like RCOCH₂CO₂H readily decarboxylate on heating.
- (b) Indicate which reagent is expected to be more nucleophilic toward CH₃Br in ethanol and why:

 $p\text{-NO}_2\text{C}_6\text{H}_4\text{O}^-$ or $p\text{-CH}_3\text{C}_6\text{H}_4\text{O}^-$

(c) Predict the major product:

$$///$$
 + HBr $\xrightarrow{-80 \text{ °C}}$?

(d) How would the pK_a values of ammonium ions change if they were determined in a solvent less polar than water?

8A/739

(Turn Over)

(e) Arrange the following classes of compounds in decreasing order of boiling point considering that they have same number of carbon atoms:

Carboxylic acids, Amides, Ketones, Nitriles

- (f) Semicarbazide has two NH₂ groups, but only one of them forms an imine. Explain.
- (g) Which tautomeric form of 2,4-pentanedione is more stable in—
 - (i) water;
 - (ii) hexane?
- (h) The reaction of an alkene with Br₂ does not require a Lewis acid but the reaction of benzene does. Why?
- 2. Answer any four questions:

2×4=8

- (a) With the help of an example, bring out the difference between a chiral centre and a stereogenic centre.
- (b) Ketones do not undergo Knoevenagel reaction with malonic acid or its esters. Why?
- (c) What products would you expect from the following reactions? 1×2=2

(i) + NBS
$$\xrightarrow{\text{peroxide}}$$
 ?

(ii)
$$O^- + O^- \longrightarrow ?$$

- (d) Account for the fact that acetals are stable to bases but are readily hydrolyzed by acids.
- (e) How would you employ organometallic reagents to make the following compounds?

- (ii) Ph
- 3. Answer any two from (a), (b) and (c) and any one from (d) and (e): 5×3=15
 - (a) Compare the relative stabilities of chair, boat and twist-boat conformations of cyclohexane.
 - (b) (i) Indicate whether the underlined atoms or groups are homotopic, enantiotopic or diastereotopic: 2

(Turn Over)

2

5

	(ii) Using 2,3,4-trihydroxyglutaric acid, point out the stereogenic, non-stereogenic, chirotopic and achirotopic carbons.
(c)	(i) Which conformer is favoured in ethylene glycol and why?
	(ii) Which conformer is favoured in 1,2-dibromoethane and why?
	(iii) Butane has chiral conformers, yet it is optically inactive. Explain.
(d)	Provide evidences for aromatic electrophilic substitutions involving— (i) π -complex;
	(ii) σ-complex.
	Draw the energy profile diagram for both the mechanisms. 4+1
(e)	(i) What do you mean by partial rate factor? How is it calculated? 1+1=2
	chlorination of toluene by using chlorine in aqueous acetic acid takes place 344 times faster than does the same reaction of benzene. The product ratio is 59.9% ortho-, 0.3% meta- and 39.8% parachlorotoluene. Calculate the partial
8A /739	rate factors for the reaction. 3

- 4. Answer either (a) or (b) and any two from (c), (d), (e) and (f):
 - (a) (i) Write the product obtained for the reaction given below and propose a mechanism for the same: 1+3=4

- (ii) Nitration of N,N-dimethyl aniline gives mainly the m-nitro derivative when concentrated nitric and sulphuric acids are used but mainly the o- and p-nitro derivatives in less acidic conditions. Why?
- (iii) Indicate the position(s) of major monoelectrophilic substitution of each of the following compounds and account for the same :

(iv) When nitrations of aromatic substrates are carried out, nitronium ion is said to act as an electrophile. Provide two evidences in support of formation of the nitronium ion.

(Turn Over)

2

2

2

(b) (i)	What happens when methyl picrate is allowed to react with potassium ethoxide? Propose a mechanism for the reaction and justify with evidences. 1+2+1	L=4
(ii)	Account for the observation that nucleophilic substitution of chlorobenzene takes place through a benzyne mechanism whereas nucleophilic substitution of chloronitrobenzenes proceeds via the addition-elimination sequence.	3
(iii)	Why is S_N1 mechanism common to diazonium compounds? Provide evidence in support of the reversible nature of the first step of the mechanism.	3
(c) (i)	Why is propene more reactive towards electrophilic addition than ethene? Explain.	2
	Propose a mechanism for the formation of <i>meso-1,2-dibromo-stilbene</i> by the addition of bromine to 2-stilbene in nitromethane.	3
(iii)	What is decarboxylation? What product(s) is/are formed by the decraboxylation of 2-methyl-butanoic acid?	2
8A /739	(Continu	ed 1
	Continua	/

	How can the compound HOCH ₂ CH ₂ NH ₂ be prepared, starting with a carbonyl compound with one fewer carbon atom than	
(the desired product? (v) What do you mean by reductive amination?	2 1
	(i) How can you convert cyclohexene to trans-1,2-cyclohexane diol? Propose a mechanism for the reaction.	3
19	Cii) Compound $A(C_{10}H_{16})$ takes up 2 mols of hydrogen on catalytic hydrogenation. Ozonolysis gives two diketones, $B(C_6H_{10}O_2)$ and $C(C_4H_6O_2)$. Propose a reasonable structure (or structures) of A .	2
(i	iii) Account for the fact that aliphatic α-chloroamines hydrolyse even more rapidly than the related α-chloroethers.	3
(i	v) How can you prepare pentan-1-ol from pentene? Write the reaction.	2
(e) (t	found to be electron-withdrawing relative to alkyl, aromatic aldehydes tend to be less reactive than aliphatic aldehydes. Explain.	ų.
8A/739		ver)

(ii) Predict the major product and propose a mechanism for the reaction given below:

3

$$+ C_6H_5CHO \xrightarrow{\text{NaOH/H}_2O} ?$$

(iii) Using the Hell-Volhard-Zelinsky reaction, propose a synthetic route for the preparation of alanine.

2

(iv) Give a chemical method distinguish three isomeric amines having the molecular formula C_3H_9N .

3

(i) Propose a mechanism for the benzoin condensation reaction. What role does cyanide ion play in this reaction? 3+1=4

(ii) Grignard reagents fail to form addition compounds with olefins. Why?

2

(iii) Distinguish between phenol and benzyl alcohol using chemical methods.

2

(iv) Diazonium salts can be used to prepare heterocyclic compounds. What happens when o-phenylenediamine is diazotized? Write the reaction.

2

3 (Sem-2) CHM M 2