Total number of printed pages-7

3 (Sem-2/CBCS) CSC HC 2

2023

COMPUTER SCIENCE

(Honours Core)

(Discrete Structure)

Paper: CSC-HC-2026

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer the following as directed:

1.

				1×10=10		
(a)	Isolated	vertices	are	vertices	with	
	4					

- degree. (Fill in the blank)
- (b) If the cardinalities of two sets are same, they are called _____ sets.

 (Fill in the blank)
- (c) A relation R on set A is called _____ relation if xRy implies yRx, $\forall x \in A$ and $\forall y \in A$. (Fill in the blank)

- In any tree (with two or more vertices), there are at least ____ pendant vertices. (Fill in the blank)
- What is the correct translation of the following statement into mathematical logic ?

"Some real numbers are rational."

- $\exists x \text{ (real } (x) \lor \text{ rational } (x))$
- $\forall x \text{ (real } (x) \rightarrow \text{ rational } (x))$
- (iii) $\exists x \text{ (real } (x) \land \text{ rational } (x))$
- (iv) $\forall x \text{ (rational } (x) \rightarrow \text{real } (x))$

(Choose the correct option)

- The correct recursive definition for sequence $1, 5, 5^2, 5^3, \dots$ is
 - $a_1 = 1$; $a_k = 5a_k$, for $k \ge 1$
 - (ii) $a_1 = 1$; $a_{k+1} = 5a_k$, for $k \ge 1$
 - (iii) $a_1 = 1$; $a_k = 5a_k^2$, for $k \ge 1$
 - (iv) $a_1 = 1$; $a_{k+1} = 5a_{k+1}$, for $k \ge 1$ (Choose the correct option)
- What is 'contradiction' in logic?
- Define the Big omega (Ω) notation.
- What is 'tautology'?
- What is 'simple graph'?

Define the following terms: 2.

 $2 \times 5 = 10$

- Disjoint set
- (ii) Recurrence tree
- (iii) Asymptotic notation
- (iv) Planar graph
- Spanning tree (v)
- Answer any four of the following: 5×4=20
 - (a) What is pigeonhole principle? If 7 colours are used to point 50 bicycles then at least how many bicycles will be of same colour.
 - (b) Using the principle of mathematical induction prove that for any positive integer n, $6^n - 1$ is divisible by 5.
 - What do you mean by normal form in logic? Obtain the principal disjunction normal form (PDNF) for the formula

$$(\sim p \rightarrow \gamma) \land (q \leftrightarrow p)$$

(d) Define 'rank' and 'nullity' of a graph. Calculate the rank and nullity for the graph in Fig. 1:

- Solve the recurrence relation $a_n = 3a_n - 1, n \ge 1, \text{ given } a_0 = 1$
- Define the principle of inclusion and exclusion for two sets A and B. If $|A \cup B| = 12$, $A \subseteq B$ and |A| = 3then calculate the value of |B|.
- Answer any four of the following: 10×4=40
 - Define a partial order relation. If a relation $R = \{(1, 1), (2, 2), (3, 3), (1, 3), (2, 3)\}$ on set $A = \{1, 2, 3\}$, determine whether R is partial order relation or not? 5
 - A team of four players has to be selected from six boys and four girls. How many different ways a team can be selected, if at least one boy must be there in the team?
 - Write the following statements (b) using quantifiers:
 - All cats are dogs.
 - Cats are not dogs.

- Not all cats are dogs. unn sall Vilren(3)
 - There are cats that are not dogs.
 - Something is either a cat or a dog.
 - Define the logical equivalent. Show that

$$(P \to Q) \land \left(P \to Q\right) \equiv P$$

- What is Hamiltonian graph? Draw (c) a graph that has a Hamiltonian path but does not have a 5 Hamiltonian circuit.
 - What is isomorphism of two graphs? Are the two graphs G_1 and G_2 in Fig. 2 isomorphic? Why? 5

Fig. 2

(d) (i) What is a valid argument? Use any method to show the following argument is valid:

$$\frac{p}{\stackrel{\sim}{q}\leftrightarrow \stackrel{\sim}{p}}$$

- What is spanning tree? Prove that every corrected graph has at least one spanning tree.
 - (e) (i) Define the asymptotic notation in detail. Calculate the Big (O), Big (Ω) and Big (Θ) for

$$f(n) = 5n^2 + n 5$$

- (ii) Define the countable infinite set and uncountable infinite set with proper example.
- (f) (i) Show that

$$1+3+3^2+\cdots+3^{n-1}=\frac{\left(3^n-1\right)}{2}$$
,

for $n \in \mathbb{N}$, by using the principle of mathematical induction. 5

(ii) Show that $\{a_n\}$ defined by $a_n = 4 \cdot 2^n + 7 \cdot 3^n$ is a solution of the recurrence relation

$$a_n - 5a_{n-1} + 6a_{n-2} = 0 5$$

- (g) (i) Define the Kuratowski's two graphs k_5 and $k_{3,3}$ with proper diagram.
 - (ii) Prove that, 'the complete graph of five vertices is nonplanary'. 5

5

6

- (h) (i) Define the 'symmetric difference' and 'set difference' of two sets (by using Venn diagram representation).
 - (ii) If $A = \{1, 2, 3\}$, $B = \{5, 6\}$, C = (2, 3), then find—
 - (a) $(C \times B) (A \times B)$

7

(b) $A \oplus B \oplus C$