3 (Sem-4/CBCS) CSC HC1

2023

COMPUTER SCIENCE

(Honours Core)

Paper: CSC-HC-4016

(Design and Analysis of Algorithms)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. (a) Define dynamic programming. 1
 - (b) Insertion sort is faster than merge sort.

(State True or False)

(c) Routing in network relies on algorithm.

1

(State True or False)

- (d) Quick sort is a
- 1

- (i) greedy algorithm
- (ii) divide and conquer algorithm
- (iii) dynamic programming algorithm
- (iv) backtracking algorithm

 (Choose the correct option)
- (e) What is the advantage of recursive approach than an iterative approach?

1

- (i) Consumes less memory
- (ii) Consumes more memory
- (iii) Less code and easy to implement
- (iv) More code has to be written
 (Choose the correct option)

- (f) What is the time complexity of depth first search algorithms?
 - (i) O (VE)
 - (ii) O (Elog V)
 - (iii) O (V log E)
 - (iv) O(V+E)

(Choose the correct option)

- (g) When we say that an algorithm X is asymptotically more efficient than Y it means?
 - (i) X will always be better for small inputs
 - (ii) X will always be better for large inputs
- (iii) Y will always be better for small inputs

(iv) X will always be better for all inputs

(Choose the correct option)

- 2. (a) What do you mean by amortized analysis?
 - (b) Analyse the time complexity of the following segment 2

for (i=0; i<N; i++) {

for (j=N/2; j>0; j--) {

sum ++;

}

- (c) What is minimum spanning tree?

 Name the algorithms used for constructing minimum spanning tree:

 1+1=2
- (d) State the rules followed by a red black tree.

3. Answer any three of the following:

5×3=15

- (a) Distinguish between dynamic programming and greedy method.
- (b) Explain how recursive algorithms are analysed with an example.
- (c) What are the advantages and disadvantages of divide and conquer approach?
- (d) Define theta (θ) notation. Prove that the function $f(x) = 5x^4 + 7x + 3$ is $\theta(x^4)$.
- (e) Prove that running time of binary search algorithm in worst case is $O(\log_2 N)$.
- 4. (a) Write the algorithm for merge sort and analyse its complexity for all cases.

4+2+2+2=10

Use quick sort technique to sort the numbers 7 11 14 6 9 4 3 12 in ascending order. Illustrate the output of each pass clearly.

(b) Given a test T[0...N-1] and a pattern P[0...M-1] where N>M, write an algorithm to print all occurrence of P[] in T[].

and the or of the or

Write algorithms for insertion and deletion in a red black tree. 5+5=10

(c) Write algorithm for breadth-first search and mention its time and space complexity. Discuss the difference between breadth-first search and depth-first search algorithms.

, 5+5=10

Discuss the differences between Kruskal's and Prim's algorithms. Apply Prim's algorithm to find the minimum spanning tree for the following graph: 5+5=10

