Total number of printed pages-7

3 (Sem-4/CBCS) GLG HC 1

2023

GEOLOGY

(Honours Core)

Paper: GLG-HC-4016

(Metamorphic Petrology)

Full Marks: 60

Time Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer: 1×7=7
 - (a) Metamorphism is a
 - (i) solid-state reconstitution
 - (ii) solid-liquid-state reconstitution
 - (iii) solid-liquid-gas-state reconstitution
 - (iv) liquid-state reconstitution

- (b) Granulite fades rocks are generally formed under
 - (i) high P-T conditions with low H₂O activities
 - (ii) low P-T conditions
 - (iii) high P-T conditions with high H₂O activities
 - (iv) low P and high T condition
- (c) A metamorphic rock, containing very high SiO₂ content (more than 80%), would indicate that the rock was originally a
 - (i) granite
 - (ii) syenite
 - (iii) sandstone
 - (iv) shale
- (d) The mineral coesite is expected to be stable in which type of the following metamorphic facies?
 - (i) Greenschist
 - (ii) Blueschist
 - (iii) Eclogite
 - (iv) Granulite

- (e) A dolerite dyke metamorphosed under amphibolites facies condition is expected to have the mineral assemblage
 - (i) chlorite + actinolite + albite
 - (ii) lawsonite + glaucophane + epidote
 - (iii) orthopyroxene + clinopyroxene + plagioclase
 - (iv) hornblande + plagioclase
- (f) The predominant agents in contact metamorphism is
 - (i) pressure
 - (ii) temperature
 - (iii) chemical fluid
 - (iv) All of the above

- (g) Regional dynamothermal metamorphism is evidenced by the
 - (i) foliated fabric of rocks
 - (ii) granular fabric of rocks
 - (iii) presence of fluid inclusion
 - (iv) None of the above
- 2. Answer the following questions: 2×4=8
 - (a) What is mylonite?
 - (b) Write the name of a geothermometer and a geobarometer those are suitable for regionally metamorphosed mineral assemblages.
 - (c) What do index minerals mean in metamorphic petrology?

- (d) State the name of most common fluids that participate in low-to-medium-grade metamorphism.
- 3. Answer **any three** question from the following: 5×3=15
 - (a) Write on the key factors that control metamorphism.
 - (b) What is chemographic diagram? What are the common chemographic diagrams used in metamorphic rocks?

 3+2=5
 - (c) Briefly explain the Barrovian zones of metapelitic sequences.
 - (d) What is migmatite? How migmatites are formed? 2+3=5
 - (e) What is eclogite? Where is it formed?

 Write on' the characteristic mineral assemblage of eclogite. 2+1+2=5

- 4. Answer **any three** of the following questions: 10×3=30
 - (a) How does a porphyroblastic texture differ from poikiloblastic texture? What are the nature of pre-, syn- and post-kinematic growths of porphyroblast? Illustrate your answer with suitable diagrams. 5+5=10
 - (b) What is the difference between metamorphism and metasomatism?

 Briefly explain the role of fluids in metamorphism.

 4+6=10
 - (c) Discuss mineralogical changes and relevant mineral reactions which occur during transformation of metabasic rocks from greenschist to amphibolite and amphibolite to granulite facies conditions. 5+5=10
 - (d) Write in detail on the relationship between deformation and metamorphism. How does deformation of rocks accelerate the rate of metamorphism? 5+5=10

- (e) What are isograde and what kind of mineral reaction used in isograde mapping? What is net transfer reaction and how does it differ from ion-exchange reaction? 5+5=10
- (f) What are the mineralogical assemblage of charnockite and khondalite? Explain briefly the origin of charnockite.

4+6=10