3 (Sem-4/CBCS) STA HC 2

2023

STATISTICS

(Honours Core)

Paper: STA-HC-4026

(Linear Models)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions as directed: $1 \times 7 = 7$
 - (a) In regression analysis, the variable that is being predicted is
 - (i) the independent variable
 - (ii) the dependent variable
 - (iii) usually denoted by x
 - (iv) usually denoted by r (Choose the correct option)

- (b) The coefficient of determination is
 - (i) equal to zero
 - (ii) the ratio of explained and total variation
 - (iii) usually less than zero
 - (iv) 100% of $(1-r^2)$ (Choose the correct option)
- (c) In least square estimation, which of the following is not a required assumption about the error term?
 - (i) The expected value of the error term is one
 - (ii) The variance of the error term is the same for all values of x
 - (iii) The values of the error term are independent
 - (iv) The error term is normally distributed

(Choose the correct option)

- (d) If the regression equation is equal to Y = 23.6 54.2 X, then 23.6 is the _____ while -54.2 is the ____ of the regression line.
 - (i) slope, intercept
 - (ii) slope, regression coefficient
 - (iii) intercept, slope
 - (iv) radius, intercept
 (Choose the correct option)
- (e) Analysis of variance is a statistical method of comparing the _____ of several populations.
 - (i) standard deviations
 - (ii) variances
 - (iii) means
 - (iv) None of the above

 (Choose the correct option)

- measures the variability of the observed values around their respective treatment means
 - (i) treatment
 - (ii) error
 - (iii) interaction
 - (iv) total

(Choose the correct option)

- (g) All OLS estimators are linear estimators.

 (Write True or False)
- 2. Answer the following questions briefly:

 2×4=8
 - (a) State some applications of the analysis of variance.
 - (b) What do you understand by components of variation?
 - (c) Define estimability of linear parametric functions.
 - (d) Define R² in the context of a linear model.

- 3. Answer **any three** of the following questions: 5×3=15
 - (a) What is a linear model? Discuss different types of linear models.
 - (b) A sample of 20 observations on X and Y gave the following data:

$$\sum Y = 21.9$$

$$\sum X = 186.2$$

$$\sum (Y - \overline{Y})^2 = 86.9$$

$$\sum (X - \overline{X}) = 215.4$$

$$\sum (X - \overline{X})(Y - \overline{Y}) = 106.4$$

Estimate the regression equation of Yon X and X on Y.

- (c) Consider the one-way AOV model $y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$, for i = 1, 2 and j = 1, 2, 3 Examine if μ, α_1, α_2 are estimable without any constraints.
- (d) In what respects do AOV, regression analysis and AOCOV differ ? Discuss briefly.
- (e) Write a note on the technique of hypothesis testing in case of simple regression models:

Y: 65 57 57 54 66 X: 26 13 16 -7 27

(b) What is analysis of variance (AOV)?

What are the basic assumptions associated with it? What are the remedies, if the assumptions are violated?

5. Answer either (a) or (b):

- (a) Define a linear regression model. Write the basic assumptions of the linear model. Estimate the parameters of the model.
- (b) Give linear model (fixed effect) for twoway classification (one observation per cell) and state its assumptions. Derive the analysis of variance of two-way classification through the method of least squares.

estimate the regression line $Y = \alpha + \beta X$, test the hypothesis that $\beta = 0$ against the alternative $\beta < 0$ at 5% level of significance, also construct 95% confidence interval for β .

(Given $t_{0.05,3} = 2.353$)

(b) Derive the 'analysis of covariance' for a one-way layout (with one consistent variable only).

7

10