3 (Sem-3/CBCS) MAT HC 1

2023

MATHEMATICS

(Honours Core)

Paper: MAT-HC-3016

(Theory of Real Functions)

Full Marks: 80

Time : Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: 1×10=10
 - (a) Is 0 a cluster point of (0,1)?
- (b) "If the limit of a function f at a point C of its domain does not exist, then f diverges at C." (Write True or False)
 - (c) Define $\underset{x\to c}{\lim} f(x) = \infty$, where $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$ and $C \in \mathbb{R}$ is a cluster point of A.

- (d) Write sequential criterion for continuity.
- (e) What do you mean by an unbounded function on a set?
- (f) Let $A,B \subseteq \mathbb{R}$ and let $f:A \to \mathbb{R}$ be continuous on A and let $g:B \to \mathbb{R}$ be continuous on B. Under what condition $g \circ f:A \to \mathbb{R}$ is continuous on A?
- (g) "If a function is continuous then it is uniformly continuous."

 (Write True or False)
- (h) If functions f_1, f_2, f_n are differentiable at c, write the expression for $(f_1.f_2.....f_n)'(c)$.
- (i) The function f(x)=x is defined on the interval I=[0,1]. Is 0 a relative maximum of f?
- (i) Define Taylor's polynomial for a function f at a point x_0 , supposing f has an nth derivative at x_0 .

- 2. Answer the following questions: 2×5=10
 - (a) Use $\varepsilon \delta$ definition of limit to show that $\lim_{x \to 0} \frac{x^2}{|x|} = 0$.
 - (b) Show that the absolute value function f(x)=|x| is continuous at every point $c \in \mathbb{R}$.
 - (c) Give an example of a function $f:[0,1] \to \mathbb{R}$ that is discontinuous at every point of [0,1], but |f| is continuous on [0,1].
 - (d) "Continuity at a point is not a sufficient condition for the derivative to exist at that point." Justify your answer.
 - (e) Show that $\lim_{x\to 0+} \frac{\sin x}{\sqrt{x}} = 0$.
- 3. Answer any four parts: 5×4=20
 - (a) Prove that a number $c \in \mathbb{R}$ is a cluster point of a subset A of \mathbb{R} if and only if there exists a sequence $\{a_n\}$ in A such that $\lim a_n = c$ and $a_n \neq c$ for all $n \in \mathbb{N}$.

(b) Show that (using $\varepsilon - \delta$ definition of limit)

$$\lim_{x \to 2} \frac{x^3 - 4}{x^2 + 1} = \frac{4}{5}$$

- (c) Prove that if I = [a,b] is a closed bounded interval and if $f: I \to \mathbb{R}$ is continuous on I then f is bounded on I.
- (d) Show that if f and g are uniformly continuous on a subset A of \mathbb{R} then f+g is uniformly continuous on A.
- (e) Suppose that f is continuous on a closed interval I = [a,b] and that f has a derivative in the open interval (a,b). Then there exists at least one point c in (a,b) such that

$$f(b)-f(a)=f'(c)(b-a).$$

(f) Let $f:I \to \mathbb{R}$ be differentiable on the interval I. Then prove that f is increasing if and only if $f'(x) \ge 0$ for all

4. Answer any four parts:

10×4=40

- (a) Prove that a real valued function f is continuous at $c \in \mathbb{R}$ if and only if whenever every sequence $\{c_n\}$, converging to c, then corresponding sequence $\{f(c_n)\}$ converges to f(c).
- (b) (i) Show that every infinite bounded subset of $\mathbb R$ has at least one limit point.
- (ii) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of A. If $a \le f(x) \le b$ for all $x \in A$, $x \ne c$ and if $\lim_{x \to c} f(x)$ exist then prove that $a \le \lim_{x \to c} f \le b$.
- (c) (i) Let I = [a,b] be a closed bounded interval. Let $f: I \to \mathbb{R}$ be such that f is continuous. Prove that f is uniformly continuous on [a,b].

5

- (ii) Show that the function $f(x) = \frac{1}{x^2}$ is uniformly continuous on $A = [1, \infty)$.
- (d) Let I = [a,b] be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. Then f has an absolute maximum and an absolute minimum on I.
- (e) (i) Let I be a closed bounded interval and let $f:I\to\mathbb{R}$ be continuous on I. Then the set $f(I)=\{f(x):x\in I\}$ is a closed bounded interval. 6
- (ii) Let $A,B\subseteq\mathbb{R}$ and let $f:A\to\mathbb{R}$ and $g:B\to\mathbb{R}$ be functions such that $f(A)\subseteq B$. If f is continuous at a point $c\in A$ and g is continuous at $b=f(c)\in B$, then show that the composition $g\circ f:A\to\mathbb{R}$ is continuous at c.

- (f) (i) Let I = [a,b] and let $f: I \to \mathbb{R}$ be continuous on I. If f(a) < 0 < f(b) or if f(a) > 0 > f(b), then prove that there exists a number $c \in (a,b)$ such that f(c) = 0.
 - (ii) Use the definition to find the derivative of the function $f(x) = \frac{1}{\sqrt{x}}$ for x > 0.
- (g) (i) State and prove Taylor's theorem. 2+5=7
 - (ii) Using the Mean Value theorem prove that $|\sin x \sin y| \le |x y|$ for all x, y in \mathbb{R} .
- (h) (i) Show that $1 \frac{1}{2}x^2 \le \cos x$ for all $x \in \mathbb{R}$ 5
 - (ii) Evaluate $\lim_{x\to 0} \left(\frac{1}{x^2} \frac{1}{\sin^2 x}\right)$ 5