STATISTICS

(Major)

Paper : 2.1

(Numerical and Computational Techniques—I)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer the following as directed:

 $1 \times 7 = 7$

- For positive integers n and m(a)
 - (i) $\Delta^n O^n = n!$ and $\Delta^m O^n = 0$, n > m
 - (ii) $\Delta^n O^n = 0$ and $\Delta^m O^n = 0$, n < m
 - (iii) $\Delta^n O^n = n!$ and $\Delta^m O^n = 0$, n < m
 - (iv) None of the above (Choose the correct option)

(Turn Over)

- (b) The value of $\Delta^{-1}(2)$ is
 - (i) O
 - (ii) 2
 - (iii) 2x
 - (iv) None of the above

(Choose the correct option)

- (c) The relationship between the operators Δ , E, δ is
 - (i) $\delta E = \Delta$
 - (ii) $\delta E^{\frac{1}{2}} = \Delta$
 - (iii) $\delta^{-1} E^{\frac{1}{2}} = \Delta$
 - (iv) None of the above

(Choose the correct option)

- (d) Consider the following statements:
 - A: Newton's formulae are applicable to nearly all cases of interpolation.
 - B: Newton's formulae do not converge as rapidly as central difference formulae.
 - (i) A is true but B is false
 - (ii) A is false but B is true
 - (iii) Both A and B are true
 - (iv) Neither A nor B is true

(Choose the correct option)

8A/748

(e) Numerical differentiation is the process of evaluating the derivative(s) of a function at some particular value of the ____ when the values of the function corresponding to the given values of the independent variable are known.

(Fill in the blank)

(f) To derive Simpson's three-eighths rule from general quadrature formula, we assume that the integrand is a polynomial of _____ degree.

(Fill in the blank)

(g) The auxiliary equation of a third order difference equation has a repeated real root α. Then the solution is

(i)
$$c_1\alpha^x + c_2\alpha^x$$

(ii)
$$(c_1 + c_2 x)\alpha^x$$

(iii)
$$(c_1 + c_2 x + c_3 x^2)\alpha^x$$

(iv)
$$(c_1 + c_2 + c_3)\alpha^x$$

(Choose the correct option)

8A/748

(Turn Over)

2×4=8

- 2. Answer the following questions:
 - (a) Prove that

$$\Delta \left\lceil \frac{f(x)}{g(x)} \right\rceil = \frac{g(x) \Delta f(x) - f(x) \Delta g(x)}{g(x) g(x+1)}$$

- (b) Calculate the value of $\Delta^2 O^5$.
- (c) Solve the difference equation

$$x_n = x_{n-1} + x_{n-2}$$

(d) Show that

$$\int_0^1 u_x dx = \frac{1}{12} (5u_1 + 8u_0 - u_{-1})$$

3. Answer any three of the following questions:

(a) If n is a positive integer, then show that

$$E^n y_x = \sum_{k=0}^n \binom{n}{k} \Delta^k y_x$$

and hence

$$E^{3} y_{x} = y_{x} + 3\Delta y_{x} + 3\Delta^{2} y_{x} + \Delta^{3} y_{x}$$

8A/748

(Continued)

(b) Prove that

$$\Delta^n O^{n+1} = \frac{1}{2} n(n+1)!$$

- (c) State and prove Gauss's forward formula for equal intervals.
- (d) Solve the difference equation

$$u_{x+2} - 4u_{x+1} + 4u_x = 2^x$$

(e) If α , β be the roots of $x^2 + ax + b = 0$, show that the iteration

$$x_{n+1} = -\frac{(ax_n + b)}{x_n}$$

will converge near $x = \alpha$, if $|\alpha| > |\beta|$ and the iteration

$$x_{n+1} = \frac{-b}{(x_n + a)}$$

will converge near $x = \alpha$, if $|\alpha| < |\beta|$.

4. Answer the following questions:

 $10 \times 3 = 30$

Show that for the interpolation of f(x)(a) relative to 0, α, 1, Lagrange's formula gives approximately

$$f(x) = \left[1 - \frac{x(x-\alpha)}{1-\alpha}\right] f(0) + \frac{x(1-x)}{1-\alpha} \frac{f(\alpha) - f(0)}{\alpha} + \frac{x(x-\alpha)}{1-\alpha} f(1)$$

Also show that if $\alpha \rightarrow 0$, it reduces to

$$f(x) = (1-x^2) f(0) + x(1-x) f'(0) + x^2 f(1)$$

Solve following the difference equations:

(i)
$$u_{x+3} - 5u_{x+2} + 8u_{x+1} - 4u_x = x \cdot 2^x$$

(ii)
$$u_{x+2} + a^2 u_x = \cos ax$$

If f(x) is a function whose (5) differences are constants $\int_{-1}^{1} f(x) dx$ can be expressed in the form of $pf(-\alpha) + q(0) + p(\alpha)$, find p, q and α . Use the formula to obtain the value of log_e 2 to four decimal places from the integral $\int_0^1 \frac{dx}{1+x}$. [Given $\sqrt{0.15} = 0.3873$]

Derive Euler-Maclaurin summation formula.

Newton's formula, derive recurrence relation to find the cube root (c) of N. Using this relation, evaluate $(10)^{\frac{1}{3}}$.

Or

Write a note on inverse interpolation. Apply Lagrange's formula (inversely) to find a root of the equation f(x) = 0, when f(30) = -30, f(34) = -13, f(38) = 3, f(42) = 18.

* * *