2019

COMPUTER SCIENCE

(Major)

Paper: 6.1

(Automata Theory and Languages)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. For the following questions, choose the correct answer from the choices given below them:

 1×7=7
 - (a) Consider the following transition diagram of a finite automaton:

Here q_0 is the starting state. From the following strings, select the string that is accepted by it:

(i) 1011

(ii) 01011

(iii) 101

(iv) 0011

A9/720

(Turn Over)

(b) Regular expression for the language consisting of all strings in {a, b} ending with b is

(i) a * b *

(ii) (a+b)*b

(iii) a*b

(iv) a * b * a * b

From the context-free following grammars, select the one that is in Chomsky Normal Form (CNF):

(i) $S \rightarrow ABa$

(ii) $S \rightarrow aS$

 $A \rightarrow Aa$

 $S \rightarrow bS$

 $B \rightarrow Bb$

 $S \rightarrow \varepsilon$

 $S \rightarrow c$

(iii) $S \rightarrow aSb$ (iv) $S \rightarrow YS \mid x$

 $Y \rightarrow SY \mid u$

(d) Consider the following grammar:

 $S \rightarrow aSb$

Sac

From the following languages, select the one that is generated by the above grammar:

(i) Language consisting of all strings in $\{a, b, c\}$

(ii) $L = \{a^n cb^n / n > 0\}$

(iii) $L = \{a^n cb^n / n \ge 0\}$

(iv) Language represented by regular expression a*cb*

The nullable variables in the following (e) grammar

 $S \rightarrow a \mid Xb \mid aYa$

 $X \to Y \mid \varepsilon$

 $Y \rightarrow b \mid X$

are

(i) X only

(ii) both X and Y

(iii) Y only

(iv) It has no nullable variables

Useless variables in the following (f) grammar

 $S \rightarrow A$

 $A \rightarrow aA \mid \varepsilon$

 $B \rightarrow bA$

are

(i) only B

(ii) only A

(iii) both A and B

(iv) there is no useless variable in the grammar

If r_1 and r_2 are two regular expressions, then which one of the following is not a regular expression?

(i) $r_1 - r_2$

(ii) $r_1 + r_2$

(iii) $r_1 r_2$

(iv) r1*

2. Answer the following questions:

 $2 \times 4 = 8$

(a) Consider the following regular expressions:

(i) $(a+b)^* a(a+b)^* a(a+b)^*$

(ii) $b^* a b^* a (a+b)^*$

(iii) $b^* a(a+b)^* ab^*$

(iv) b ab ab

Select the regular expression that does not represent the language consisting of all strings in a and b having at least two a's. What language does this particular regular expression represent?

- (b) Draw the transition diagram of a finite automaton that accepts the language consisting of all strings in a and b ending with the substring 'aab'.
- (c) Convert the following grammar to Chomsky Normal Form (CNF):

 $S \rightarrow AS \mid AAS$ $A \rightarrow SA \mid aa$

(d) State the pumping lemma for regular languages and cite one use of it.

3. Answer any three of the following questions:

5×3=15

- (a) Prove that the set of context-free languages is closed under union.
- (b) Prove that the language $L = \{a^n b^n c^n / n \ge 0\}$ is not a context-free language.
- (c) Design a finite automaton for the language consisting of all strings in $(a+b)^*$ not having 'aab' as a substring.
- (d) When is a CFG said to be ambiguous? Show that the following grammar

 $S \rightarrow SS$

 $S \rightarrow \varepsilon$

 $S \rightarrow aSb \mid bSA$

is ambiguous.

(e) Remove all useless symbols, null productions and unit productions from the following grammar:

 $S \rightarrow aA \mid aBB$

 $B \rightarrow aaA \mid \varepsilon$

 $B \rightarrow bB \mid bbC$

 $C \rightarrow B$

2.

4. Answer any *three* of the following questions:

10×3=30

(a) Prove that if a language L is accepted by a DFA, then it is described by a regular expression.

(b) (i) Give a context-free grammar that generates the language

$$L = \{w \in (a+b)^* / w = w^R$$

i.e., w is a palindrome}

(ii) Consider the following CFG, G:

$$S \rightarrow aSA \mid aAA \mid b$$

$$A \rightarrow bBBB$$

$$B \rightarrow b$$

Construct a PDA accepting L(G).

Construct a pushdown automaton (PDA) for any one of the following languages:

(i)
$$L = \{a^n b^{2n} / n \ge 0\}$$

(ii)
$$L = \{ww^R / w \in (a+b)^*\}$$

(d) If L is a CFL, then prove that there is a PDA that accepts L.

Prove the equivalence of DFA and NFA.

What is a parse tree? What are leftmost and rightmost derivations in a grammar? Give examples. Consider the following grammar:

$$E \rightarrow T$$

$$T \rightarrow F$$

$$F \rightarrow I$$

$$E \rightarrow E + T$$

$$T \rightarrow T * F$$

$$F \rightarrow (E)$$

$$I \rightarrow a |b| c$$

where E is the starting variable. Construct a derivation tree for

$$((a+b)*c)+a$$

