2019

STATISTICS

(Major)

Paper: 6.4

(Computer Programming and Multivariate Analysis)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following as directed:

 $1 \times 7 = 7$

(a) Let $X \sim N_3 (\mu, \Sigma)$ with

$$\sum = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Are X_1 and X_3 independent?

- (b) State the built-in mathematical function in Fortran 77 to find the square root of x.
- (c) Marginal distribution of any x_j of a multinomial distribution with parameters $(n, p_1, p_2, ..., p_k)$ follows binomial distribution. (State True or False)

- (d) Let (X, Y) ~BVND $(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho)$. Then the conditional variance of X/Y = y is _____. (Fill in the blank)
- (e) Write the decimal equivalent of octal number 25348.
- (f) What is the value of M in the following Fortran 77 expression?

$$M = 2 * 7/5$$

- (i) M = 2.8
- (ii) M = 3
- (iii) M=2
- (iv) None of the above

(Choose the correct option)

- (g) Define Hotelling's T^2 statistic.
- **2.** Answer the following questions: $2 \times 4 = 8$
 - (a) State any two properties of multivariate normal distribution.
 - (b) Write equivalent FORTRAN 77 statements for each of the following expressions:
 - (i) $e^{-x}x^{kx}$
 - (ii) $e^{-\left(\frac{x-a}{b}\right)^2}$
 - (c) Let $X \sim N_p(\mu, \Sigma)$. Then find var (CX) where C is a $p \times p$ non-singular matrix.
 - (d) Write an algorithm to find the arithmetic mean of three numbers A, B, C.

A9/708

(Continued)

3. Answer any three of the following questions:

5×3=15

(a) Let $(X, Y) \sim BVND$ (0, 0, 1, 1, ρ). Then show that

$$Q = \frac{X^2 - 2\rho XY + Y^2}{(1 - \rho^2)}$$

is distributed as chi-square with n = 2 d.f.

(b) What is the final value of a in the following sequence of statements in FORTRAN 77?

$$a = 2 \cdot 45$$

$$a = (a + 0 \cdot 06) * 10$$

$$k = a$$

$$a = k$$

$$a = a/10 \cdot 0$$

If a = 2.45 is replaced by a = 2.43 above, what is the final value of a? 3+2=5

- (c) Obtain the probability-generating function of multinomial distribution with parameters $(n, p_1, p_2, \dots p_k)$.
- (d) Draw a flowchart to find the largest among three numbers M, N, P.
- (e) Examine if Hotelling's T^2 is invariant under changes in the unit of measurement.

4. Answer the following questions: 10×3=30

(a) State the pdf of BVND $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$.

Derive bivariate normal density as a particular case of multivariate normal distribution.

1+9=10

Or

(b) If $X \sim N_p(\mu, \Sigma)$, then prove that the quadratic form in the multivariate normal density function

$$Q = (X - \mu)' \Sigma^{-1} (X - \mu)$$

follows χ^2 distribution with pdf.

(c) Write a FORTRAN 77 program to find the regression coefficient of Y on X.

Or

- (d) (i) Write an explanatory note on 'Arithmetic IF' statement used in FORTRAN 77.
 - (ii) Explain briefly about WHILE-DO statement. 5+5=10
- (e) Derive mean and variance of multinomial distribution. Also compute the variance, covariance matrix Σ.

Or

(f) (i) Let $X \sim N_5$ (μ , Σ). Then find the distribution of $(X_2, X_4)'$.

(ii) Write a FORTRAN 77 program to calculate harmonic mean of n observations x_1, x_2, \dots, x_n . 4+6=10

* * *